
Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 1(80)

Author Printed

Stefan Ahlqvist

ADQ-API

User Guide

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 2(80)

Author Printed

Stefan Ahlqvist

Contents

1 Overview ... 3

2 Structure ... 5

3 Functions of ADQ-API ... 6

4 Application Programming Flowchart .. 7

4.1 Multi-record mode .. 7

4.2 Streaming mode ... 8

5 Code Examples ... 9

6 API Reference ... 9

6.1 API Specific Functions ... 9

6.2 ADQControlUnit Functions ... 9

6.3 ADQ functions .. 15

6.3.1 ADQ Setup Functions ... 15

6.3.2 ADQ Peripheral Functions .. 33

6.3.3 ADQ Data Acquisition Functions .. 35

6.3.4 ADQ Data Transfer Functions .. 37

6.3.5 ADQ StatusFunctions ... 42

6.4 ADQ Special Block Functions .. 50

6.4.1 Waveform Averaging and Triggered Streaming Block Functions .. 50

6.4.2 Packet Streaming Functions ... 58

6.4.3 Interleaving IP Block Functions ... 59

6.4.4 Precise-Period Trigger.. 61

6.4.5 ADQ DSP and DSU Specific Functions .. 62

6.4.6 Arbitrary Waveform Generator (AWG) .. 63

6.4.7 MicroTCA-specific functions .. 67

6.4.9 Peer-to-Peer function .. 69

6.4.10 PXIe backplane trigger block .. 69

6.5 Deprecated functions ... 70

6.6 Intentionally undocumented functions .. 74

7 MATLAB INTERFACE ... 78

7.1 Using interface_ADQ ... 78

7.2 Functions Differing from C/C++ style API ... 79

7.3 Functions Specific for interface_ADQ.m ... 79

8 ERROR CODES ... 80

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 3(80)

Author Printed

Stefan Ahlqvist

1 OVERVIEW

ADQ-API provides a simple and powerful programming interface to ADQ devices. The programming
interface handles all communication with the connected ADQ devices with just a few highly abstracted
functions.

ADQ-API consists of these classes:

 ADQControlUnit – An object that manages connection between the ADQ devices and the host
computer. The ADQControlUnit creates objects of type ADQDSP, DSU, SDR14, ADQ212,
ADQ412, ADQ108, ADQ208, ADQ1600,ADQ112, ADQ114 and ADQ214.

 ADQDSP– An instance of this object is connected to a specific ADQDSP device and handles the
 communication with it.

 DSU– An instance of this object is connected to a specific ADQDSP device and handles the
 communication with it.

 SDR14 – An instance of this object is connected to a specific SDR14 device and handles the
 communication with it.

 ADQ1600 – An instance of this object is connected to a specific ADQ1600 device and handles the
 communication with it.

 ADQ412– An instance of this object is connected to a specific ADQ412 device and handles the
 communication with it.

 ADQ212– An instance of this object is connected to a specific ADQ212 device and handles the
 communication with it.

 ADQ108– An instance of this object is connected to a specific ADQ108 device and handles the
 communication with it.

 ADQ208– An instance of this object is connected to a specific ADQ208 device and handles the
 communication with it.

 ADQ112– An instance of this object is connected to a specific ADQ112 device and handles the
 communication with it.

 ADQ114 – An instance of this object is connected to a specific ADQ114 device and handles the
 communication with it.

 ADQ214 – An instance of this object is connected to a specific ADQ214 device and handles the
 communication with it.

Windows:

These classes are hidden in a dll-file and interfaced via a function set where the user specifies which
ADQ device to communicate with. The interface consists of three files:

ADQAPI.lib – This file must be linked to the code project for compilation of the program.

ADQAPI.dll – This dynamic linked library must be located in the same directory as the compiled
program or have a proper path for it set up.
When SP Devices software development kit (SDK) is installed, this dll is copied to the windows dll
directory and will always be accessible for the computer.

ADQAPI.h – A header file that must be linked to the code project for declaration of the ADQ-API
function set. This is used for programming in C/C++. For other languages, it must be modified.

The SDK installation provides three different versions of these files. If the code project is compiled on a
on a 32-bit system, the files in the ADQAPI-foldermust be used. If the code project is compiled on a 64-
bit system, the files in ADQAPI_64 must be used for 64-bit applications and the files in ADQ_API_32_64
should be used for 32-bit applications. In the latter case, the 32-bit API works for USB but not for e.g.
PCIe.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 4(80)

Author Printed

Stefan Ahlqvist

Linux:

The Linux ADQ library providing ADQAPI will follow existing naming conventions and will be called
libadq. If installed from a package, the library will be installed in "/usr/lib" and the api header
(ADQAPI.h) will be installed in "/usr/include". Instructions on how to install and use the ADQAPI for
Linux are found in the installation package. For Linux, the ADQAPI only supports 64-bit systems.

Via the function “void* CreateADQControlUnit()” a pointer to an ADQControlUnit object is created and
should be used as input to all of the other functions for the API to work properly. Do only call
CreateADQControlUnitonce for stable behavior or delete the object with
“void DeleteADQControlUnit(void* adq_cu_ptr)” before creating another.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 5(80)

Author Printed

Stefan Ahlqvist

ADQ214 ADQ214 ADQ114

2 STRUCTURE

Programming interface

 . . .

Host computer

USB 2.0 / PXIe

 . . .

Driver

USB or PXIe

Programming interface

 ADQ-API.dll

Connects to
ADQ devices

ADQ214
instance

#2

ADQ214
instance

#1

ADQ114
instance

#1

ADQControlUnit

Status
functions

Data
acquisition
functions Setup

functions

API revision

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 6(80)

Author Printed

Stefan Ahlqvist

3 FUNCTIONS OF ADQ-API

The functions of the ADQ-API are categorized into three main sets.

API Specific functions - Purely related to the API itself and not to the operation of digitizers.
ADQControlUnit functions - Interface with the device driver for tasks such as finding and initializing
digitizers
ADQ functions - Interface directly with a specific digitizer

In the documentation of the ADQ functions it is specified which ADQ device is supported by each
function.

The ADQ functions are divided into the subcategories:

Setup functions
Data acquisition functions
Status functions.

When standard-C access to the API is desired, all functions except CreateADQControlUnit take a void* to
an ADQControlUnit instance as input. In the following tables it is assumed that only one ADQControlUnit
has been created and adq_cu_ptr refers to the pointer that points to it.

Via the function void* CreateADQControlUnit()a pointer to an ADQControlUnit object is created and
should be used as input to all of the other functions for the API to work properly. Only call
CreateADQControlUnit once for stable behavior.

ADQControlUnit instances may be deleted using:
void DeleteADQControlUnit(void* adq_cu_ptr) before creating another.

When C++ access to the API is desired, use the ADQControlUnit_GetADQ function to get a pointer to the
ADQInterface object. The ADQInterface object is defined in the ADQAPI.h file. The pointer can then be used
directly to call the API functions.

Small C++-style code example:

void* ADQCU = NULL;

int TypeOfBoard;

ADQInterface* ADQDevice = NULL;

ADQCU = CreateADQControlUnit();

if((ADQCU != NULL) && (ADQControlUnit_NofADQ(ADQCU) > 0))

{

 ADQDevice = ADQControlUnit_GetADQ(ADQCU, 1);

 ADQDevice->ResetDevice(16);

 TypeOfBoard = ADQDevice->GetADQType();

}

DeleteADQControlUnit(ADQCU);

If there are deviations in function naming between the C and C++ API, the naming for the C++ objects
retrieved through ADQControlUnit_GetADQ, is especially noted in the function document sections as “C++
name“.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 7(80)

Author Printed

Stefan Ahlqvist

4 APPLICATION PROGRAMMING FLOWCHART

4.1 Multi-record mode

Create ADQControlUnit

Run FindDevices()

Check which devices are
available

NofADQ112 ...

Check for failures
GetFailedDeviceCount

Setup specific device(s)

Delete ADQControlUnit

Setup # records
and record size

Setup which trigger(s)
to use

Arm unit

Setup general device
settings

(custom, transfer, etc)

Trigger unit

Check if data is available

Download data record(s)

Disarm unit

Re-arm
Yes No

Application
Entry Point

Application
Exit Point

Handle data
Write to disk

Signal processing
Detection algorithms

Custom app code

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 8(80)

Author Printed

Stefan Ahlqvist

4.2 Streaming mode

Create ADQControlUnit

Run FindDevices()

Check which devices are
available

NofADQ112 ...

Check for failures
GetFailedDeviceCount

Setup specific device(s)

Delete ADQControlUnit

Setup streaming

Setup which trigger(s)
to use

Arm unit

Setup general device
settings

(custom, transfer, etc)

Check if data is available

Download data

Done?

Yes

Application
Entry Point

Application
Exit Point

Handle data
Write to disk

Signal processing
Detection algorithms

Custom app code

No

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 9(80)

Author Printed

Stefan Ahlqvist

5 CODE EXAMPLES

Please see the C_examples and Cpp_examples folders found in the SDK installer directory. There are code
examples for, among other things:

 Multi-record mode data collection
 Streaming
 Waveform averaging

6 API REFERENCE

6.1 API Specific Functions

API Specific Function Description

ADQAPI_GetRevision

int ADQAPI_GetRevision()

Returns the revision number of the DLL.

6.2 ADQControlUnit Functions

ADQControlUnitFunction Description

CreateADQControlUnit

void* CreateADQControlUnit()

Creates an instance of an ADQControlUnit that

is capable to find and establish connection to

ADQ devices. Returns a pointer to the

ADQControlUnit

CreateADQControlUnitWN

void* CreateADQControlUnitWN(HANDLE

ReceiverWnd)

Creates an instance of an ADQControlUnit that

is capable to find and establish connection to

ADQ devices. Also registers a top window to

receive any notifications of device removals.

Returns a pointer to the ADQControlUnit

DeleteADQControlUnit

void DeleteADQControlUnit(

void* adq_cu_ptr)

Deletes the instance of ADQControlUnit that

adq_cu_ptr points to.

ADQControlUnit_FindDevices

int ADQControlUnit_FindDevices(

void* adq_cu_ptr)

Finds all ADQ units connected to the computer

and creates/updates a separate list of pointers

for all ADQ types. Returns the total number of

devices found. Creates new ADQobject(s) if

found for the first time. The order of the

devices is determined by their USB bus

addresses and/or their PXIe address.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 10(80)

Author Printed

Stefan Ahlqvist

ADQControlUnit_ListDevices

int ADQControlUnit_ListDevices(

void* adq_cu_ptr, struct ADQInfoListEntry**

retList, unsigned int* retLen)

The ListDevices/OpenDeviceInterface/SetupDevice

functions are intended as a more versatile

replacement for FindDevices.

ListDevices creates a list of available ADQ

devices without attempting to boot any firmware

or set up any communication channels.

The function requires pointers to a list

pointer and a length integer to be provided.

The list is then returned as an array which can

be indexed from retList[0] to retList[retLen-

1], with each entry corresponding to an ADQ

device.

The ADQInfoListEntry structure is found in the

ADQAPI.h header file and contains all

information which can be read non-destructively

from the device:

struct ADQInfoListEntry

{

 enum ADQHWIFEnum HWIFType;

 enum ADQProductID_Enum ProductID;

 unsigned int VendorID;

 unsigned int AddressField1;

 unsigned int AddressField2;

 char DevFile[64];

 unsigned int DeviceInterfaceOpened;

 unsigned int DeviceSetupCompleted;

};

enum ADQProductID_Enum {

 PID_ADQ214 = 0x0001,

 PID_ADQ114 = 0x0003,

 PID_ADQ112 = 0x0005,

 PID_SphinxHS = 0x000B,

 PID_SphinxLS = 0x000C,

 PID_ADQ108 = 0x000E,

 PID_ADQDSP = 0x000F,

 PID_SphinxAA14 = 0x0011,

 PID_SphinxAA16 = 0x0012,

 PID_ADQ412 = 0x0014,

 PID_ADQ212 = 0x0015,

 PID_SphinxAA_LS2 = 0x0016,

 PID_SphinxHS_LS2 = 0x0017,

 PID_SDR14 = 0x001B,

 PID_ADQ1600 = 0x001C,

 PID_SphinxXT = 0x001D,

 PID_ADQ208 = 0x001E,

 PID_DSU = 0x001F

};

enum ADQHWIFEnum {

 HWIF_USB,

 HWIF_PCIE

};

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 11(80)

Author Printed

Stefan Ahlqvist

ADQControlUnit_OpenDeviceInterface

int ADQControlUnit_OpenDeviceInterface(

void* adq_cu_ptr, int ADQInfoListEntryNumber)

After running ListDevices and finding an entry

of interest in the device list,

OpenDeviceInterface is used to open a

communications channel towards the device.

The ADQInfoListEntryNumber argument should be

the array index of the listdevices entry you

want to open, i.e. if you want to open the

device corresponding to retList[0], pass 0 to

this function.

Using this function will add an ADQ object to

the internal lists of the ADQControlUnit. This

means that the ADQ will show up when using

functions such as ADQControlUnit_GetADQ or

ADQControlUnit_NofADQ, etc. Simple tasks such

as reading and writing registers can be done at

this stage, but data collection and similar

requires ADQControlUnit_SetupDevice() to be run

also.

Please note that the device number when using

GetADQ/NofADQ/etc will not have anything to do

with the index number used in this function.

ADQControlUnit_SetupDevice

int ADQControlUnit_SetupDevice(

void* adq_cu_ptr, int ADQInfoListEntryNumber)

After running ListDevices and having used

OpenDeviceInterface to open a communication

channel towards a specific device, this

function is used to do everything necessary to

make the device ready for use, such as

initializing API variables, calibrating PLLs,

calibrating ADC data interfaces, reseting

internal logic, etc. After this, the digitizer

is ready for use.

This function takes the same index number as

was used with OpenDeviceInterface, i.e. the

ListDevices array index corresponding to your

device.

Please note that the device number when using

GetADQ/NofADQ/etc will not have anything to do

with the index number used in this function.

ADQControlUnit_GetFailedDeviceCount

int ADQControlUnit_GetFailedDeviceCount(

void* adq_cu_ptr)

After a call to ADQControlUnit_FindDevices this

function returns the number of units found,

which was not possible to start correctly

(error reported during start of device)

If zero is returned no devices failed to start.

Cause of failure can be one of:

 Incompatible HW device version

 Power-off during setup phase

 Malfunctioning FPGA code (if used with

ADQ Development Kit)

ADQControlUnit_GetLastFailedDeviceError

unsigned int

ADQControlUnit_GetLastFailedDeviceError(void*

adq_cu_ptr);

Returns the last returned error code from a

failing device.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 12(80)

Author Printed

Stefan Ahlqvist

ADQControlUnit_EnableErrorTrace

unsigned int

ADQControlUnit_EnableErrorTrace(void*

adq_cu_ptr, int trace_level, const char*

trace_file_dir);

Enables log file output from the connected

devices, each device opens a separate log file.

trace_level = 0 : No error logging

trace_level = 1 : Error logging

trace_level = 2 : Error and warnings logging

trace_level = 3 : Error, warning, info logging

The log file(s) is opened in the directory

specified by the string in the trace_file_dir

argument.

Note: To log errors from a specific device it

is often best to disconnect all other ADQ

devices to get a single, non-conflicting log

file as the result.

ADQControlUnit_GetADQ

C++ only

ADQInterface* ADQControlUnit_GetADQ(

void* adq_cu_ptr, int adq_num)

Returns a pointer to the ADQInterface object

for the corresponding ADQ.Used for C++

interfacing.

ADQControlUnit_NofADQ

int ADQControlUnit_NofADQ(

void* adq_cu_ptr)

Returns the number of ADQ devices found, any

type.

ADQControlUnit_NofADQDSP

int ADQControlUnit_NofADQDSP(

void* adq_cu_ptr)

Returns the number of ADQDSP devices found.

ADQControlUnit_NofADQ412

int ADQControlUnit_NofADQ412(

void* adq_cu_ptr)

Returns the number of ADQ412 devices found.

ADQControlUnit_NofADQ212

int ADQControlUnit_NofADQ212(

void* adq_cu_ptr)

Returns the number of ADQ212 devices found.

ADQControlUnit_NofADQ108

int ADQControlUnit_NofADQ108(

void* adq_cu_ptr)

Returns the number of ADQ108 devices found.

ADQControlUnit_NofADQ208

int ADQControlUnit_NofADQ208(

void* adq_cu_ptr)

Returns the number of ADQ208 devices found.

ADQControlUnit_NofADQ112

int ADQControlUnit_NofADQ112(

void* adq_cu_ptr)

Returns the number of ADQ112 devices found.

ADQControlUnit_NofADQ114

int ADQControlUnit_NofADQ114(

void* adq_cu_ptr)

Returns the number of ADQ114 devices found.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 13(80)

Author Printed

Stefan Ahlqvist

ADQControlUnit_NofADQ1600

int ADQControlUnit_NofADQ1600(

void* adq_cu_ptr)

Returns the number of ADQ1600 devices found.

ADQControlUnit_NofSDR14

int ADQControlUnit_NofSDR14(

void* adq_cu_ptr)

Returns the number of SDR14 devices found.

ADQControlUnit_NofADQ214

int ADQControlUnit_NofADQ214(

void* adq_cu_ptr)

Returns the number of ADQ214 devices found.

ADQControlUnit_DeleteADQDSP

void ADQControlUnit_DeleteADQDSP(

void* adq_cu_ptr, int adqdsp_n)

Deletes the ADQDSP object of number adqdsp_n.

Note: This function will rearrange the list of

ADQDSPs and a given number for an ADQ device

will maybe no longer refer to the same object

as before.

1 <= n <= NofADQDSP

ADQControlUnit_DeleteADQ412

void ADQControlUnit_DeleteADQ412(

void* adq_cu_ptr, int adq412_n)

Deletes the ADQ412 object of number adq412_n.

Note: This function will rearrange the list of

ADQ412s and a given number for an ADQ device

will maybe no longer refer to the same object

as before.

1 <= n <= NofADQ412

ADQControlUnit_DeleteADQ212

void ADQControlUnit_DeleteADQ212(

void* adq_cu_ptr, int adq212_n)

Deletes the ADQ212 object of number adq212_n.

Note: This function will rearrange the list of

ADQ212s and a given number for an ADQ device

will maybe no longer refer to the same object

as before.

1 <= n <= NofADQ212

ADQControlUnit_DeleteADQ108

void ADQControlUnit_DeleteADQ108(

void* adq_cu_ptr, int adq108_n)

Deletes the ADQ108 object of number adq108_n.

Note: This function will rearrange the list of

ADQ108s and a given number for an ADQ device

will maybe no longer refer to the same object

as before.

1 <= n <= NofADQ108

ADQControlUnit_DeleteADQ208

void ADQControlUnit_DeleteADQ208(

void* adq_cu_ptr, int adq208_n)

Deletes the ADQ208 object of number adq208_n.

Note: This function will rearrange the list of

ADQ208s and a given number for an ADQ device

will maybe no longer refer to the same object

as before.

1 <= n <= NofADQ208

ADQControlUnit_DeleteADQ112

void ADQControlUnit_DeleteADQ112(

void* adq_cu_ptr, int adq112_n)

Deletes the ADQ112 object of number adq112_n.

Note: This function will rearrange the list of

ADQ112s and a given number for an ADQ device

will maybe no longer refer to the same object

as before.

1 <= n <= NofADQ112

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 14(80)

Author Printed

Stefan Ahlqvist

ADQControlUnit_DeleteADQ114

void ADQControlUnit_DeleteADQ114(

void* adq_cu_ptr, int adq114_n)

Deletes the ADQ114 object of number adq114_n.

Note: This function will rearrange the list of

ADQ114s and a given number for an ADQ device

will maybe no longer refer to the same object

as before.

1 <= n <= NofADQ114

ADQControlUnit_DeleteADQ1600

void ADQControlUnit_DeleteADQ1600(

void* adq_cu_ptr, int adq1600_n)

Deletes the ADQ1600 object of number adq1600_n.

Note: This function will rearrange the list of

ADQ1600s and a given number for an ADQ device

will maybe no longer refer to the same object

as before.

1 <= n <= NofADQ1600

ADQControlUnit_DeleteSDR14

void ADQControlUnit_DeleteSDR14(

void* adq_cu_ptr, int sdr14_n)

Deletes the SDR14 object of number sdr14_n.

Note: This function will rearrange the list of

SDR14s and a given number for an ADQ device

will maybe no longer refer to the same object

as before.

1 <= n <= NofSDR14

ADQControlUnit_DeleteADQ214

void ADQControlUnit_DeleteADQ214(

void* adq_cu_ptr, int adq214_n)

Deletes the ADQ214 object of number adq214_n.

Note: This function will rearrange the list of

ADQ214s and a given number for an ADQ device

will maybe no longer refer to the same object

as before.

1 <= n <= NofADQ214

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 15(80)

Author Printed

Stefan Ahlqvist

6.3 ADQ functions

The ADQfunctions handle the communication to the connected ADQ-devices. All of these functions takes
“void* adq_cu_ptr, int adqxxx_num” as input. adq_cu_ptr refers to the ADQControlUnit that was used to
connect to this ADQ device. adqxxx_num is the number of the specific ADQ-device to interface. This number
corresponds to its place in the ADQControlUnits ADQxxx list.

ADQxxx should here be replaced by the name of the ADQ-device that you are interfacing. This may be
ADQDSP, DSU, ADQ412, ADQ212, ADQ108, ADQ208, ADQ1600, SDR14, ADQ112, ADQ114 or ADQ214. In
the following part of this document it is assumed that you replace ADQxxx with the proper ADQ-device
name.

6.3.1 ADQ Setup Functions

Setup Function Description

Blink

unsigned int ADQxxx_Blink(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ108, ADQ112, ADQ114, ADQ1600,

ADQ208, ADQ212, ADQ214, ADQ412, ADQDSP, DSU,

SDR14

Identify board with blinking of the green LED

on the front panel.

ValidateDll

unsigned int ValidateDll()

Function for checking that your application

is compiled with the correct ADQAPI.h. Only

usable with the C++ API. Please use the macro

VALIDATE_DLL(ADQInterface* p) that will exit

the application on failure or

IS_VALID_DLL(ADQInterface* p)that returns 1

on valid dll and 0 otherwise.

ResetDevice

unsigned int ADQxxx_ResetDevice(

void* adq_cu_ptr, int adqxxx_num, int

resetlevel)

Valid for: ADQ108, ADQ208, ADQ412, ADQ212,

ADQ112, ADQ114, ADQ214, SDR14, ADQ1600

Resets the ADQ device.

resetlevel = 2 => Soft reset, restores to

default power-on state [valid for all

devices]

resetlevel = 8 =>Soft reset of communication

link [valid for all devices]

resetlevel = 16 => Hard reset (hardware

device) [only for USB ADQ V5 versions]

Note: resetlevel 16 is only supported on USB

devices.

Note: After ResetDevice with resetlevel 16 is

issued, hardware must be re-enumerated

through the ADQControlUnit by issuing

FindDevices. This reset makes the connection

between the API and the hardware invalid.

Returns 1 for successful operation and 0 for

failure.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 16(80)

Author Printed

Stefan Ahlqvist

ReBootADQFromFlash

unsigned int ADQxxx_ReBootADQFromFlash(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ1600, ADQ412, SDR14

Reads the PCIe configuration header from the

ADQ, reboots the ADQ, and then writes the

PCIe configuration header back to it.

This effectively power-cycles the FPGA of the

ADQ. The ADQ must then be re-enumerated by

issuing the FindDevices-command.

Returns 1 for successful operation and 0 for

failure.

ResetOverheat

unsigned int ADQxxx_ResetOverheat(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ108, ADQ208, ADQ412, SDR14,

ADQ1600

Reset the device from an overheat condition.

Device will be initiated to a default

configuration.

Returns 1 for successful operation and 0 for

failure.

RebootCOMFPGAFromSecondaryImage

unsigned int

ADQxxx_RebootCOMFPGAFromSecondaryImage(void*

adq_cu_ptr, int adq214_num)

Valid for: ADQ214

Reload COM FPGA from secondary image

Note:It takes about 5 seconds to complete.

Returns 13 for successful operation and 0 for

failure.

RebootALGFPGAFromPrimaryImage

unsigned int

ADQxxx_RebootALGFPGAFromPrimaryImage(void*

adq_cu_ptr, int adq214_num)

Valid for: ADQ214

Reload COM FPGA from secondary image

Note:It takes about 5 seconds to complete.

Returns 13 for successful operation and 0 for

failure.

SetSampleDecimation

unsigned int ADQxxx_SetSampleDecimation(

void* adq_cu_ptr, int adqxxx_num,

unsigned int decimationfactor)

Valid for: ADQ214

Enables decimation.

Decimationfactor = 0 => No decimation

Decimationfactor = 1 => Decimation by 2
1
=2

Decimationfactor = 2 => Decimation by 2
2
=4

…

Decimationfactor = 34 => Decimation by 2
34

Note:For decimationfactor>0, set data format

to ADQ214_DATA_FORMAT_UNPACKED_32BIT. (See

SetDataFormat)

SetTrigLevelResetValue

int ADQxxx_SetTrigLevelResetValue(

void* adq_cu_ptr, int adqxxx_num,

int resetlevel)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214,

ADQ108, ADQ208, ADQ412, SDR14, ADQ1600

Sets the offset level for which the level

trigger shall arm the trigger for detecting

rising or falling edges.

Note:A smaller value results in a more

sensitive trigger. A larger value suppresses

noise better.

Note:This setting function should rarely be

used, as the default value is usually working

best.

Returns 1 for successful operation and 0 for

failure.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 17(80)

Author Printed

Stefan Ahlqvist

SetLvlTrigLevel

int ADQxxx_SetLvlTrigLevel(

void* adq_cu_ptr, int adqxxx_num,

int level)

Valid for: ADQ412, ADQ212, ADQ108, ADQ208,

ADQ112, ADQ114, ADQ214, SDR14, ADQ1600

Sets the level for which the level trigger

shall trig.

ADQ114/214:

-8192 <= level <= 8191 (14 bit data)

ADQ112/ADQ412/ADQ212:

-2048 <= level <= 2047 (12 bit data)

ADQ108/ADQ208:

-128<= level <= 127 (8 bit data)

Other:

-2^31 <= level <= 2^31-1 (32 bit data)

Note:This setting must be re-set after

changing sample width, even if level value is

unchanged.

Returns 1 for successful operation and 0 for

failure.

SetLvlTrigEdge

int ADQxxx_SetLvlTrigEdge(

void* adq_cu_ptr, int adqxxx_num,

int edge)

Valid for: ADQ412, ADQ212, ADQ108, ADQ208,

ADQ112, ADQ114, ADQ214, SDR14, ADQ1600

Set the edge which the level trigger shall

trig for.

edge = 1 => Rising edge

edge = 0 => Falling edge

Returns 1 for successful operation and 0 for

failure.

SetLvlTrigChannel

int ADQxxx_SetLvlTrigChannel(

void* adq_cu_ptr, int adqxxx_num,

int ChannelCode)

Valid for: ADQ412, ADQ212, ADQ214, ADQ208,

SDR14

Sets the channel for which the level trigger

shall correspond to.Channel C and D are only

available for ADQ412.

ChannelCode = 0 => None

ChannelCode = 1 => Channel A

ChannelCode = 2 => Channel B

ChannelCode = 4 =>Channel C

ChannelCode = 8 =>Channel D

To trig on multiple channels add the channel

code for each individual channel. Examples:

ChannelCode = 10 =>Any of Channel B and D

ChannelCode = 15 =>Any Channel

Note for ADQ412:

When interleaving, enable level trigger for

both channels that are interleaved (that is,

use ChannelCode = 0, 3, 12 or 15. This is

because channel A&B and C&D are interleaved.

Returns 1 for successful operation and 0 for

failure.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 18(80)

Author Printed

Stefan Ahlqvist

SetClockSource

int ADQxxx_SetClockSource(

void* adq_cu_ptr, int adqxxx_num,

int source)

Valid for: ADQ412, ADQ1600, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, SDR14

Set the clock source for the ADQ device.

ADQ108, ADQ208, ADQ112, ADQ114, ADQ214:

source = 0 => Internal clock source,

 Internal 10 MHz reference

source = 1 => Internal clock source,

 External 10 MHz reference

source = 2 => External clock source

ADQ108, ADQ208:

source = 3 => Internal clock source,

 External 10 MHz reference from

 PXIsync

ADQxxx-MTCA:

source = 4 => Internal clock source,

 external TCLKA backplane

 reference

source = 5 => Internal clock source,

 external TCLKB backplane

 reference

NOTE for ADQ112/114/212/214:

When setting external clock source, do not

follow with the command to set the pll freq

divider because it will reset the source to

internal.

SetClockFrequencyMode

int ADQxxx_SetClockFrequencyMode(

void* adq_cu_ptr, int adqxxx_num,

int clockmode)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214

Set the clock frequency mode for the ADQ

device. If internal clock and reference is

used, this is handled automatically. If

external clock or external reference is used,

the boardmust be explicitly set in low-

frequency mode if required.

source = 1 =>High frequency mode (default)

 (External clock range 240-

550MHz)

source = 0 =>Low frequency mode

 (External clock range 35-240MHz)

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 19(80)

Author Printed

Stefan Ahlqvist

SetInterleavingMode

int ADQxxx_SetInterleavingMode(

void* adq_cu_ptr, int adqxxx_num,

char mode)

Valid for: ADQ412, ADQ208, ADQ1600

Sets interleaving mode.

ADQ412:

When enabled ADQ412 will use only 2 of the 4

inputs but at doubled sampling rate.

mode = 0 =>Four channel mode (default)

mode = 1 =>Two channel mode, active inputs A

/ C

mode = 2 =>Two channel mode, active inputs B

/ D

mode = 3 =>Two channel mode, all inputs

active

ADQ208:

When enabled ADQ208 will use only 1 of the 2

inputs but at doubled sampling rate.

mode = 0 => Two channel mode

mode = 1 => One channel mode (default)

SetPllFreqDivider

int ADQxxx_SetPllFreqDivider(

void* adq_cu_ptr, int adqxxx_num,

int divider)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214

Sets the divider in the pll and restarts the

pll, and checks if it locks properly.

Note: This function will call

SetClockFrequencyMode if the clock source is

internal reference.

Clock frequency to the ADCs and sample rate

is calculated by (internal reference is

10Mhz):

2 <= divider <= 20

ADQ214:

ADQ114:

ADQ112:

Returns 1 for successful operation and 0 for

failure.

Note: Dividers 18-20 may sometimes fail to

get the PLL locked for ADQ114/ADQ214 devices

as this renders a clock out of specification

for the clocking circuitry in the FPGA. If

you require lower sampling rates, please

consider using the sample skip function. The

function will then return failure.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 20(80)

Author Printed

Stefan Ahlqvist

SetPll

int ADQxxx_SetPll(

void* adq_cu_ptr, int adqxxx_num,

int n_divider, int r_divider,

int vco_divider, int channel_divider)

Valid for: ADQ412, ADQ1600, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, SDR14

Sets the dividers in the pll and restarts the

pll.

Not all parameters can be changedon all

cards. Please look under the specific card

below to see how the sample frequency is set.

ADQ214, ADQ212:

ADQ114, ADQ112:

ADQ108, ADQ208:

 (if using a 10
MHz reference clock).

ADQ412:

For ADQ412-1G:

 (if using a 10
MHz reference clock).

For ADQ412-3G and ADQ412-4G:

 (if using a 10
MHz reference clock).

ADQ1600:

 (if using a 10
MHz reference clock).

Note for ADQ114, ADQ214, ADQ112, ADQ212:

The limits for the inputs parameters are:

1<= n_divider<= 262175

1<= r_divider <= 16383

2<= vco_divider <= 6

1<= channel_divider <= 32

Notefor ADQ114, ADQ214, ADQ112, ADQ212:

This function will call SetClockFrequencyMode

if the clock source is internal reference.

Note for ADQ114, ADQ214, ADQ112, ADQ212:

Frequencies lower than 100 MHz may sometimes

fail to get the PLL locked as this renders a

clock out of specification for the clocking

circuitry in the FPGA. If you require lower

sampling rates, please consider using the

sample skip function.

Note for ADQ108 and ADQ208: Frequencies lower

than 6000 MHz may sometimes fail to get the

PLL locked as this renders a clock out of

specification for the clocking circuitry in

the FPGA.

Note for ADQ412 and ADQ1600: VCO Frequencies

lower than 1400 MHz may sometimes fail to get

the PLL locked as this renders a clock out of

specification for the clocking circuitry in

the FPGA.

Returns 1 for successful operation and 0 for

failure.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 21(80)

Author Printed

Stefan Ahlqvist

SetSampleSkip

unsigned int ADQxxx_SetSampleSkip(

void* adq_cu_ptr, int adqxxx_num,

unsigned int skipsamples)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214,

ADQ208, ADQ412

Sets up the sample skip function.

skipsamples = 1 =>No samples skipped

skipsamples = N =>Every N:th sample kept

ADQ214/ADQ212 (allowed N):

N = 2, 4, 6, 8, …, 131072

ADQ112/ADQ114 (allowed N):

N = 2, 4, 8, 12, …, 262140

ADQ208, ADQ412 (allowed N):

N = 2, 4, 8, 16, 32, 64, 128

Returns 1 for successful operation and 0 for

failure/unsupported N.

SetTriggerMode

int ADQxxx_SetTriggerMode(

void* adq_cu_ptr, int adqxxx_num,

int trig_mode)

Valid for: ADQ412, ADQ1600, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, SDR14

Sets how the ADQ device shall be trigged.

All devices:

trig_mode = 1 => Software trigger only mode

trig_mode = 2 => External trigger 1 mode

trig_mode = 3 => Level trigger mode

trig_mode = 4 =>Internal trigger mode

trig_mode = 7 => External trigger 2 mode

trig_mode = 8 => External trigger 3 mode

NOTE: External triggers 2 and 3 are not

available on all board hardware.

Returns 1 for successful operation and 0 for

failure.

Note: The software trigger is always enabled

regardless of mode.

SetExternTrigEdge

int ADQxxx_SetExternTrigEdge(

void* adq_cu_ptr, int adqxxx_num,

int trig_mode)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214,

ADQ108, ADQ208, ADQ412, ADQ1600, SDR14

Set the edge which the external trigger shall

trig for.

edge = 1 => Rising edge

edge = 0 => Falling edge

Returns 1 for successful operation and 0 for

failure.

SetExternalTriggerDelay

unsigned int ADQxxx_SetExternalTriggerDelay(

void* adq_cu_ptr, int adqxxx_num,

unsigned char delaycycles)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214

Sets the delay of the external trigger to

match the data path. In default

configurations this is setup correctly by the

API. If there is additional delay in user

configured logic, this API call may be used

to compensate correctly.

delaycycles (0-61) => Number of data path

clock cycles to delay the external trigger.

Note: 1 data path clock cycle is 4 samples on

ADQ112/ADQ114 and 2 samples on ADQ214 and

ADQ212.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 22(80)

Author Printed

Stefan Ahlqvist

SetInternalTriggerPeriod

int ADQxxx_SetInternalTriggerPeriod(

void* adq_cu_ptr, int adqxxx_num,

unsigned int TriggerPeriodClockCycles)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214,

ADQ108, ADQ208, ADQ412, ADQ1600, SDR14

Sets the period of the internal trigger.

ADQ112/ADQ114:

Period =

TriggerPeriodClockCycles*(1/(fclk/4))

ADQ212/ADQ214:

Period =

TriggerPeriodClockCycles*(1/(fclk/2))

ADQ108/ADQ208:

Period =

TriggerPeriodClockCycles*(1/(fclk/32))

ADQ412:

Period =

TriggerPeriodClockCycles*(1/(fclk/2))

ADQ1600:

Period =

TriggerPeriodClockCycles*(1/(fclk/8))

SDR14:

Period =

TriggerPeriodClockCycles*(1/(fclk/4))

Example: A value of 200000 on on ADQ114

sampling at default speed of 800MHz gives a

1kHz internal trigger

Returns 1 for successful operation and 0 for

failure.

SetInternalTriggerFrequency

unsigned int

ADQxxx_SetInternalTriggerFrequency(

void* adq_cu_ptr, int adqxxx_num,

unsigned int Int_Trig_Freq)

Valid for: ADQ214, ADQ208, ADQ1600, ADQ412

Set the frequency for the internal trigger

directly in Hertz without needing to manually

calculate the trigger period.

Int_Trig_Freq is the frequency in Hz

Beware that the desired frequency will only

be approximatedand the approximation also

depends on the current sampling frequency in

use!

For manual control of the internal frequency

period, the command SetInternalTriggerPeriod

can also be used. SetInternalTriggerFrequency

is only meant to make it more convenient.

EnableInternalTriggerCounts

unsigned int

ADQxxx_EnableInternalTriggerCounts(void*

adq_cu_ptr, int adqxxx_num)

Valid for: ADQ214

Enable the internal trigger counter block so

that the number of triggers can be

controlled. A number of triggers must be

specified with the function call

SetInternalTriggerCounts enabling alone will

not pass thru any triggers if you have not

specified how many triggers that will be

allowed to pass thru.

DisableInternalTriggerCounts

unsigned int

ADQxxx_DisableInternalTriggerCounts(void*

adq_cu_ptr, int adqxxx_num)

Valid for: ADQ214

Disable the internal trigger counter block.

This will let the internal trigger block to

run freely and all the triggers generated by

the internal trigger block will propagate

forward as normal.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 23(80)

Author Printed

Stefan Ahlqvist

SetInternalTriggerCounts

unsigned int

ADQxxx_SetInternalTriggerCounts(void*

adq_cu_ptr, int adqxxx_num, unsigned int

trigger_counts)

Valid for: ADQ214

Set the number of triggers that will be

allowed to propagate forward from the

internal trigger block. This can be used to

control the amount of generated triggers to

investigate if a trigger has been missed by

the data capturing interface.

trigger_counts is the amount of positive

trigger edges that be allowed thru.

ClearInternalTriggerCounts

unsigned int

ADQxxx_ClearInternalTriggerCounts(void*

adq_cu_ptr, int adqxxx_num)

Valid for: ADQ214

This function will initiate the counting of

the number of triggers outputted by the

internal trigger block. Every time the

function is called the counting will restart

from zero. This can be used to control

“bursts of triggers” with a certain time

interval between each burst.

MultiRecordSetup

unsigned int ADQxxx_MultiRecordSetup(

void* adq_cu_ptr, int adqxxx_num,

unsigned int NumberOfRecords,

unsigned int SamplesPerRecord)

Valid for: ADQ412, ADQ1600, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, SDR14

Setups the memory buffers for multi-record

mode (multiple triggers) in the ADQ device.

NumberOfRecords is the amount of records you

want to setup the device to collect.

SamplesPerRecords is the size of each record.

Note:The two parameters apply to all

available channels at the same time.

Returns 1 for successful operation and 0 for

failure. Failures include trying to allocate

more memory than is available.

MultiRecordSetupGP

unsigned int ADQxxx_MultiRecordSetupGP(

void* adq_cu_ptr, int adqxxx_num,

unsigned int NumberOfRecords,

unsigned int SamplesPerRecord,

unsigned int* mrinfo)

Valid for: ADQ412, ADQ1600, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, SDR14

Setups the memory buffers for multi-record

mode (multiple triggers) in the ADQ device.

NumberOfRecords is the amount of records you

want to setup the device to collect.

SamplesPerRecords is the size of each record.

mrinfo is a pointer to an area where the API

writes resulting settings, for use with for

example MemoryDump/MemoryShadow functions.

This area must be preallocated to be 10x32-

bit integers. The API will write 10x32-bit

integer values into this area. Use NULL if

mrinfo should not be used.

Note: The two parameters apply to all

available channels at the same time.

Fields in mrinfo:

unsigned int [0] = dram_start_addr

unsigned int [1] = dram_end_addr

unsigned int [2] = dram_addr_per_record

unsigned int [3] = dram_bytes_per_addr

unsigned int [4] = setup_records

unsigned int [5] = setup_samples

unsigned int [6] = setup_padded_samples

unsigned int [7] = max_number_of_records

unsigned int [8] = shadow_size

unsigned int [9] = reserved

Returns 1 for successful operation and 0 for

failure. Failures include trying to allocate

more memory than is available.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 24(80)

Author Printed

Stefan Ahlqvist

GetMaxNofRecordsFromNofSamples

unsigned int

ADQxxx_GetMaxNofRecordsFromNofSamples(

void* adq_cu_ptr, int adqxxx_num,

unsigned int NofSamples,

unsigned int* MaxNofRecords)

Valid for: ADQ412, ADQ1600, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, SDR14

Returns the maximum number of records that

can be used in MultiRecordSetup, given a

desired number of samples.

The value is returned in the variable pointed

to by the MaxNofRecords-pointer.

Returns 1 for successful operation and 0 for

failure.

GetMaxNofSamplesFromNofRecords

unsigned int

ADQxxx_GetMaxNofSamplesFromNofRecords(

void* adq_cu_ptr, int adqxxx_num,

unsigned int NofSamples,

unsigned int* MaxNofSamples)

Valid for: ADQ412, ADQ1600, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, SDR14

Returns the maximum number of samples that

can be used in MultiRecordSetup, given a

desired number of records.

The value is returned in the variable pointed

to by the MaxNofSamples-pointer.

Returns 1 for successful operation and 0 for

failure.

MultiRecordClose

unsigned int ADQxxx_MultiRecordClose(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ1600, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, SDR14

Closes multi-record mode and returns the ADQ

device to single record mode.

Returns 1 for successful operation and 0 for

failure.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 25(80)

Author Printed

Stefan Ahlqvist

SetStreamStatus

int ADQxxx_SetStreamStatus(

void* adq_cu_ptr, int adqxxx_num,

unsigned int status)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214,

ADQ108, ADQ208, ADQ412, ADQ1600, SDR14

Control streaming mode.

Use the following macros to control streaming

mode.

ADQ214 & ADQ212:

ADQ214_STREAM_DISABLED

ADQ214_STREAM_ENABLED_BOTH

ADQ214_STREAM_ENABLED_A

ADQ214_STREAM_ENABLED_B

ADQ114 & ADQ112:

ADQxxx_STREAM_DISABLED

ADQxxx_STREAM_ENABLED

If you want streaming to wait for a trigger

after arming – or the above function with the

macro ADQxxx_STREAM_WAIT_FOR_TRIGGER

ADQ108, ADQ208, ADQ1600, ADQ412, SDR14:

0x0 (stream disabled)

0x1 (stream enabled)

0x9 (redirect data to DRAM)

Note: When stream status is set to 0x1 and

ArmTrigger is executed, data will be streamed

immediately and the user application must

start emptying with the API command

CollectDataNextPage. When stream status is

set to 0x9, the DRAM may be emptied using the

MemoryDump function after setting stream

status to 0x0. Stream mode 0x9 Requires

firmware revision 12920 or newer.

Returns 1 for successful operation and 0 for

failure.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 26(80)

Author Printed

Stefan Ahlqvist

SetPreTrigSamples

int ADQxxx_SetPreTrigSamples(

void* adq_cu_ptr, int adqxxx_num,

unsigned int PreTrigSamples)

Valid for: ADQ412, ADQ1600, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, SDR14

Sets the size of the pretrigger buffer.

The granularity of this buffer depends on the

product type:

ADQ412: 8 samples (non-interleaved)

 16 samples (interleaved)

ADQ1600: 8 samples

ADQ108: 32 samples

ADQ208: 16 samples (non-interleaved)

 32 samples (interleaved)

SDR14: 8 samples (non-interleaved)

 16 samples (interleaved)

ADQ214: 2 samples (non-interleaved)

 4 samples (interleaved)

ADQ212: 2 samples (non-interleaved)

 4 samples (interleaved)

ADQ114: 2 samples

ADQ112: 2 samples

This means that any pretrigsample size will

be rounded UP by the granularity.

For example on ADQ412 in non-interleaved

mode; if you set pretrigsamples to 5, it will

automatically be rounded up to 8 samples and

if you instead set it to 9, it will be

rounded up to 16 samples.

0 <= PreTrigSamples <= BufferSize/RecordSize*

Returns 1 for successful operation and 0 for

failure.

*BufferSize is the buffer size set by ADQxxx_SetBufferSize.

Posttrig data will be filled up in the rest of the buffer.In

Multi-Record mode the size is set by RecordSize, i.e.

SamplesPerRecord.

*When using this function, TriggerHoldOffSamples is

automatically reset to zero.

SetTriggerHoldOffSamples

int ADQxxx_SetTriggerHoldOffSamples(

void* adq_cu_ptr, int adqxxx_num,

unsigned int TriggerHoldOffSamples)

Valid for: ADQ412, ADQ1600, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, SDR14

Sets the number of samples to wait for

acquiring data after the trigger.

Note: per channel if applicable (ADQ214).

0 <= TriggerHoldOffSamples<= 2^31

Returns 1 for successful operation and 0 for

failure.

*When using this function PreTrigSamples is automatically

reset to zero. All data in the buffer will be acquired after

the holdoff.

*For ADQ112/ADQ114 the effective granularity is 4 samples.

For ADQ214 the effective granularity is 2 samples. For

ADQ108 the effective granularity is 32 samples.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 27(80)

Author Printed

Stefan Ahlqvist

SetDataFormat

unsigned int ADQxxx_SetDataFormat(

void* adq_cu_ptr, int adqxxx_num,

unsigned int format)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214,

ADQ412, ADQ108, ADQ208, ADQ1600, SDR14

Sets the sample format.

This function will call ADQxxx_SetNofBits,

ADQxxx_SetSampleWidth and

ADQxxx_WriteAlgoRegister and set all

parameters needed for a sample width and/or

alignment change.

Use the following macros for setting a

specific sample format:

ADQ214& ADQ114:

ADQxxx_DATA_FORMAT_PACKED_14BIT

ADQxxx_DATA_FORMAT_UNPACKED_14BIT

ADQxxx_DATA_FORMAT_UNPACKED_16BIT

ADQxxx_DATA_FORMAT_UNPACKED_32BIT

ADQ112 & ADQ212:

ADQx12_DATA_FORMAT_PACKED_12BIT

ADQx12_DATA_FORMAT_UNPACKED_12BIT

ADQx12_DATA_FORMAT_UNPACKED_16BIT

ADQx12_DATA_FORMAT_UNPACKED_32BIT

ADQ108& ADQ208:

0 = ADQ108_DATA_FORMAT_PACKED_8BIT

2 = ADQ108_DATA_FORMAT_UNPACKED_16BIT

3 = ADQ108_DATA_FORMAT_UNPACKED_32BIT

ADQ412:

0 = ADQ412_DATA_FORMAT_PACKED_12BIT

1 = ADQ412_DATA_FORMAT_UNPACKED_12BIT

2 = ADQ412_DATA_FORMAT_UNPACKED_16BIT

3 = ADQ412_DATA_FORMAT_UNPACKED_32BIT

ADQ1600 & SDR14:

0 = XXXX_DATA_FORMAT_PACKED_16BIT

1 = XXXX_DATA_FORMAT_UNPACKED_16BIT

3 = XXXX_DATA_FORMAT_UNPACKED_32BIT

The packed format will configure the ADQ to

store samples for minimal memory footprint,

unpacking after transfer to the host PC is

done automatically when using single or

multi-record mode. Using streaming mode,

unpacking will not be done and is not

recommended for use.

Unpacked mode should be used for streaming,

this configures the ADQ to store samples

padded to 16 bits. 12 & 14 bit modes are

stored with sign-extended MSBs. 16 bit mode

is stored with zero-padded LSBs.

Unpacked 32 bit mode is used for decimation

data, data is stored with zero-padded LSBs.

Returns 1 for successful operation and 0 for

failure.

SetDirectionTrig

int ADQxxx_SetDirectionTrig(

void* adq_cu_ptr, int adqxxx_num,

int direction)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214,

ADQ108, ADQ208, ADQ412, ADQ1600

Sets the direction of the trig connector.

direction = 0 -> Input

direction = 1 -> Output: Data from WriteTrig

calls

direction = 5 -> Output: a positive pulse for

each trigger accepted (ignore WriteTrig

calls) (not valid for ADQ108/ADQ208)

Returns 1 for successful operation and 0 for

failure.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 28(80)

Author Printed

Stefan Ahlqvist

SetConfigurationTrig

int ADQxxx_SetConfigurationTrig(

void* adq_cu_ptr, int adqxxx_num,

unsigned int mode, unsigned int pulselength,

unsigned int invertoutput)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214,

ADQ1600, ADQ412

Sets the configuration of the trig connector.

When issued, this overrides any previous

calls to SetDirectionTrig.

Mode is one of:

0x00: Trigger set to input (default)

0x01: WriteTrig() data

0x05: Trigger state (See app note)

0x11: Trigger event *) **)

0x19: Level trigger *) **)

0x41: Internal trigger 50% duty cycle

0x45: Internal trigger *)

*) Pulselength sets the length of the output

pulse in nanoseconds when trigger connector

is used as output.Minimum is 20ns (14.4ns for

ADQ112/ADQ212) and maximum is 5100 ns (3672ns

for ADQ112/ADQ212). Default is minimum pulse

length.

If invertoutput is 1, the output will be

inverted.

If mode is OR:ed with bit 5 (mode | 0x20) the

special GPIO trigger block will be activated.

Triggers are then blocked with an active high

input on GPIO connector pin 5.

**)Wired OR between units, set WriteTrig(1)

Returns 1 for successful operation and 0 for

failure.

WriteTrig

int ADQxxx_WriteTrig(

void* adq_cu_ptr, int adqxxx_num,

int level)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214,

ADQ108, ADQ208, ADQ412, ADQ1600

Sets the output level for the trig output.

level = 0-> low

level = 1 -> high

Returns 1 for successful operation and 0 for

failure.

SetDirectionGPIO

int ADQxxx_SetDirectionGPIO(

void* adq_cu_ptr, int adqxxx_num,

unsigned int direction,

unsigned int mask)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214,

ADQ412, ADQ108, ADQ208, ADQ1600, SDR14

ADQ112 ADQ114 ADQ212 ADQ214 Before FPGA#2

revision 3991:

Only GPIO pin#5 has GPIO function. Sets the

direction of the GPIO pin#5 by the bits in

direction and mask.

direction[4] = GPIO pin 5

0 = input (default)

1 = output

ADQ112 ADQ114 ADQ212 ADQ214 after and

including FPGA#2 revision 3991;

ADQ412, ADQ108, ADQ208 all versions:

Sets the direction of the GPIO pins by the

bits in direction and mask.

direction[0] = GPIO pin 1

direction[1] = GPIO pin 2

direction[2] = GPIO pin 3

direction[3] = GPIO pin 4

direction[4] = GPIO pin 5

0 = input (default)

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 29(80)

Author Printed

Stefan Ahlqvist

1 = output

Note: The mask performs a negative mask, i.e.

only the bits that are zero in the mask will

be written.

Returns 1 for successful operation and 0 for

failure.

WriteGPIO

int ADQxxx_WriteGPIO(

void* adq_cu_ptr, int adqxxx_num,

unsigned int data,

unsigned int mask)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214,

ADQ412, ADQ108, ADQ208, ADQ1600, SDR14

ADQ112 ADQ114 ADQ212 ADQ214 Before FPGA#2

revision 3991:

Sets the state of the GPIO pins with output

capability by the bits in data and mask.

Out pin 4 = data[0]

Out pin 3 = data[1]

GPIO pin 5 = data[4]

ADQ112 ADQ114 ADQ212 ADQ214 after and

including FPGA#2 revision 3991;

ADQ412, ADQ108, ADQ208 all versions:

Sets the output of the GPIO pins by the bits

in data and mask.

GPIO pin 0 = data[0]

GPIO pin 1 = data[1]

GPIO pin 2 = data[2]

GPIO pin 3 = data[3]

GPIO pin 4 = data[4]

Note: The mask performs a negative mask, i.e.

only the bits that are zero in the mask will

be written.

Note:Use SetDirectionGPIO to set the pin as

output or input.

Returns 1 for successful operation and 0 for

failure.

ReadGPIO

unsigned int ADQxxx_ReadGPIO(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214,

ADQ412, ADQ108, ADQ208, ADQ1600, SDR14

ADQ112 ADQ114 ADQ212 ADQ214 Before FPGA#2

revision 3991:

Returns the state of the GPIO pins.

output[2] = In pin 2

output[3] = In pin 1

output[5] = GPIO pin 5

Where outputis the returned value.

ADQ112 ADQ114 ADQ212 ADQ214 after and

including FPGA#2 revision 3991;

ADQ412, ADQ108, ADQ208 all versions:

Returns the state of the GPIO pins.

data[0] = GPIO pin 1

data[1] = GPIO pin 2

data[2] = GPIO pin 3

data[3] = GPIO pin 4

data[4] = GPIO pin 5

Where outputis the returned value.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 30(80)

Author Printed

Stefan Ahlqvist

EnableClockRefOut

unsigned int ADQxxx_EnableClockRefOut(

void* adq_cu_ptr, char enable)

Valid for: ADQ108, ADQ208, ADQ412, ADQ1600,

SDR14

Enables or disables clock reference output.

enable = 1 =>Clock reference output enabled

enable = 0 => Clock reference output disabled

Returns 1 for successful operation and 0 for

failure.

ReadRegister

unsigned int ADQxxx_ReadRegister(

void* adq_cu_ptr, int adqxxx_num,

int addr)

Valid for: ADQ412, ADQ1600, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, ADQDSP, SDR14,

DSU

Reads a 32 bit word from the FPGA register

space. For V5 products, only the Comm FPGA is

reachable by this function.

Address space is 32 bits, word length is 32

bits.

Returns the read data.

WriteRegister

unsigned int ADQxxx_WriteRegister(

void* adq_cu_ptr, int adqxxx_num,

int addr,

int mask,

int data)

Valid for: ADQ412, ADQ1600, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, ADQDSP, SDR14,

DSU

Writes a masked 32 bit word, to the FPGA

address space. For V5 products, only the Comm

FPGA is reachable by this function.

Address space is 32 bits, word length is 32

bits.

Note: The mask performs a negative mask, i.e.

only the bits that are zero in the mask will

be written.

Returns the answer from the FPGA depending on

the register written.

ReadUserRegister

unsigned int ADQxxx_ReadUserRegister(

void* adq_cu_ptr, int adqxxx_num,

int addr, unsigned int* retval)

Valid for: ADQ412, ADQ1600, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, ADQDSP, SDR14,

DSU

Reads one of the 32-bit user logic output

registers.

Returns 1 for success, 0 for failure.

The read data is returned via the retval

pointer.

WriteUserRegister

unsigned int ADQxxx_WriteUserRegister(

void* adq_cu_ptr, int adqxxx_num,

int addr, int mask, int data,

unsigned int* retval)

Valid for: ADQ412, ADQ1600, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, ADQDSP, SDR14,

DSU

Performs a masked write of a value to one of

the 32-bit user logic input registers.

Note: The mask performs a negative mask, i.e.

only the bits that are zero in the mask will

be written.

Returns 1 for success, 0 for failure.

The register data is read out again after the

write and returned in the retval pointer. You

can use a mask of 0xFFFFFFFF to simply check

the current value of an input register

without overwriting it.

retval may be set to NULL if readout is not

desired.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 31(80)

Author Printed

Stefan Ahlqvist

ReadAlgoRegister

unsigned int ADQxxx_ReadAlgoRegister(

void* adq_cu_ptr, int adqxxx_num,

int addr)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214

Reads a 16 bit word from the ADQ algorithm

FPGA register space.

Registers are defined by Algo FPGA code,

address space is 15 bits with 16 bit word

size.

Returns the read data.

WriteAlgoRegister

unsigned int ADQxxx_WriteAlgoRegister(

void* adq_cu_ptr, int adqxxx_num,

int addr,

int data)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214

Writes data to the ADQ algorithm FPGA

register addr.

Registers are defined by Algo FPGA code,

address space is 15 bits with 16 bit word

size.

Returns the answer from the FPGA depending on

the register written.

SetTrigTimeMode

int ADQxxx_SetTrigTimeMode(

void* adq_cu_ptr, int adq114_num,

int TrigTimeMode)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214,

ADQ412, ADQ1600, SDR14

Sets which mode the trig timer should work

in.

0 => continuous count

1 => activate sync mode, count sync pulses

and reset counter.

ResetTrigTimer

int ADQxxx_ResetTrigTimer(

void* adq_cu_ptr, int adqxxx_num,

int TrigTimeRestart)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214,

ADQ412, ADQ1600, SDR14

Reset the trig timer. Restarts the timer by

default.

0 => Timer waits for start pulse to start

1 => Timer restarts immediately

SetTestPatternMode

unsigned int ADQxxx_SetTestPatternMode(

void* adq_cu_ptr, int adqxxx_num,

int mode)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214,

ADQ108, ADQ208

Enables and sets which mode the test pattern

mux should work in.

ADQ112/ADQ212/ADQ114/ADQ214:

0 => Normal operational mode (direct data)

1 => Test mode with user constant output

2 => Test mode with 16-bit counter

3-6 => Reserved test modes

7 => Mode for merging GPIO with data

(unpacked 16-bit modes only)

SetTestPatternConstant

unsigned int ADQxxx_SetTestPatternConstant(

void* adq_cu_ptr, int adqxxx_num,

int value)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214,

ADQ208, ADQ108

Sets the 16-bit constant value used for some

of the test pattern modes.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 32(80)

Author Printed

Stefan Ahlqvist

SetAfeSwitch

unsigned int ADQxxx_SetAfeSwitch(

void* adq_cu_ptr, int adqxxx_num,

unsigned int afemask)

Valid for: ADQ214, ADQ212

Sets the AFE relays and PDWN signals to DC-

AFE buffers.

Bitmap of afemask:

0: AFE relay ch A, 0 =>AC-AFE, 1 =>DC-AFE

1: AFE relay ch B, 0 =>AC-AFE, 1 =>DC-AFE

2: DC amp ch A PDWN, 0 => amp OFF, 1 => amp

ON

3: LF amp ch B PDWN, 0 => amp OFF, 1 => amp

ON

Ex:

0x0000 =>AC-AFE both channels

0x0005 => DC-AFE ch A, AC-AFE ch B

0x000A => AC-AFE ch A, DC-AFE ch B

0x000F => DC-AFE both channels

The ADQ device starts up with afe mode 0x0000

Returns 1 for successful command transfer and

0 for failure.

SetGainAndOffset

unsigned int ADQxxx_SetGainAndOffset(

void* adq_cu_ptr, int adqxxx_num,

unsigned char Channel, int Gain, int Offset)

Valid for: ADQ114, ADQ112, ADQ214, ADQ212,

ADQ1600, SDR14

Sets the digital gain and offset which is

located directly after the sampling circuit.

Note, the settings are relative to the

factory calibrated settings. To override this

relativeness, set bit 7 of the Channel

argument to 1.

Maximum allowed values is 32767 and minimum

allowed value is -32768.

Gain is scaled by 10 bits i.e. 1024

corresponds to unity gain.

Offset is scaled by codes i.e. 1 corresponds

to 1 ADC code (multiplied by current Gain

setting)

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 33(80)

Author Printed

Stefan Ahlqvist

6.3.2 ADQ Peripheral Functions

Peripheral Function Description

ADCCalibrate

int ADQxxx_ADCCalibrate(void* adq_cu_ptr, int

adqxxx_num)

Valid for: ADQ412, ADQ108, ADQ208

Tells on-board ADCs to perform calibration

immediately.

(Not recommended to use in applications.)

ReadADCCalibration

unsigned int ADQxxx_ReadADCCalibration(

void* adq_cu_ptr, int adqxxx_num,

unsigned char ADCNo, unsigned short*

Calibration)

Valid for: ADQ412

Reads out the internal calibration of one ADC

and stores it in the user allocated space

Calibration.

The same data can be written back with

WriteADCCalibration to restore a specific

state.

(Not recommended to use in applications.)

WriteADCCalibration

unsigned int ADQxxx_WriteADCCalibration(

void* adq_cu_ptr, int adqxxx_num,

unsigned char ADCNo, unsigned short*

Calibration)

Valid for: ADQ412

Reads out the internal calibration of one ADC

and stores it in the user allocated space

Calibration.

(Not recommended to use. If Calibration

contains anything but what has been reported

by a ReadADCCalibration call, results are

unpredictable.)

ReadEEPROM

unsigned int ADQxxx_ReadEEPROM(void*

adq_cu_ptr, int adqxxx_num,

int addr)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214,

ADQ412, ADQ108, ADQ208, ADQ1600, SDR14

Reads one byte from the on-board EEPROM.

Returns the read byte.

WriteEEPROM

unsigned int ADQxxx_WriteEEPROM(

void* adq_cu_ptr, int adqxxx_num,

int addr,

int data,

int accesscode)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214,

ADQ412, ADQ108, ADQ208, ADQ1600, SDR14

Writes one byte to the on-board EEPROM. The

lower 64 pages (256 byte pages => addr <

16384) are reserved for internal use and

requires an accesscode to be given.

data is 8-bit value.

Returns the answer from the comm. FPGA.

ReadEEPROMDB

unsigned int ADQxxx_ReadEEPROMDB(void*

adq_cu_ptr, int adqxxx_num,

int addr)

Valid for: ADQ412, ADQ108, ADQ208, ADQ1600,

SDR14

Reads one byte from the on-board, on the

daughterboard, EEPROM.

Returns the read byte.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 34(80)

Author Printed

Stefan Ahlqvist

WriteEEPROMDB

unsigned int ADQxxx_WriteEEPROMDB(

void* adq_cu_ptr, int adqxxx_num,

int addr,

int data,

int accesscode)

Valid for: ADQ412, ADQ108,ADQ208, ADQ1600,

SDR14

Writes one byte to the on-board, on the

daughterboard, EEPROM. The lower 64 pages

(256 byte pages => addr < 16384) are reserved

for internal use and requires an accesscode

to be given.

data is 8-bit value.

SetDACOffsetVoltage

unsigned int SDR14_SetDACOffsetVoltage(

unsigned char channel,

float v)

Valid for: SDR14

Sets the common-mode voltage for the DAC

outputs.

channel = Output channel, 1 or 2

v = CM voltage, -1.0 to 1.0

SetExtTrigThreshold

unsigned int ADQxxx_SetExtTrigThreshold(

unsigned int trignum,

double vthresh)

Valid for: ADQ1600

Sets the threshold voltage of the specified

external trigger input.

trignum = Trigger number, allowed numbers are

hardware dependent (some boards only have

trig1, others have 1,2,3, etc).

vthresh = Threshold voltage. 0.5V is default.

TrigoutEnable

unsigned int ADQxxx_TrigoutEnable(

unsigned int bitflags)

Valid for: ADQ1600

Allows the user to select which trigout

connectors to send the trigout output signal

to.

bitflags = An asserted bit 0 outputs signal

on trigout1, asserted bit 1 outputs signal on

trigout2, etc.

HasTrigHardware

unsigned int ADQxxx_HasTrigHardware(

unsigned int trignum)

Valid for: ADQ1600

Returns 1 if the specified external trigger

input exists in the board hardware.

trignum = Trigger number

HasTrigoutHardware

unsigned int ADQxxx_HasTrigoutHardware(

unsigned int trignum)

Valid for: ADQ1600

Returns 1 if the specified external trigger

output exists in the board hardware.

trignum = Trigger number

HasVariableTrigThreshold

unsigned int ADQxxx_HasVariableTrigThreshold(

unsigned int trignum)

Valid for: ADQ1600

Returns 1 if the specified external trigger

input supports variation of the trigger

threshold voltage (via the

SetExtTrigThreshold command).

trignum = Trigger number

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 35(80)

Author Printed

Stefan Ahlqvist

6.3.3 ADQ Data Acquisition Functions

Data Acquisition Function Description

ArmTrigger

int ADQxxx_ArmTrigger(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, ADQ1600,

SDR14

This command must be sent before the ADQ device is

allowed to be trigged. When the trigger is armed

the ADQ device records a record of samples

whenever the device is trigged untilNofRecords

records is acquired.

Note: When the ADQ device is busy recording a

record of data, the device will ignore trigs.

Note: To rearm the device, you must first call

ADQxxx_DisarmTrigger, then ADQxxx_ArmTrigger.

Returns 1 for successful operation and 0 for

failure.

DisarmTrigger

int ADQxxx_DisarmTrigger(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, ADQ1600,

SDR14

Disarms the trigger. The ADQ device cannot be

trigged when trigger is disarmed. When the trigger

is disarmed the memorycounter is reset, so next

time ADQxxx_ArmTrigger is called and the device

records a record of data,this record will

overwrite the previous first record.

Returns 1 for successful operation and 0 for

failure.

SWTrig

int ADQxxx_SWTrig(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, ADQ1600,

SDR14

Trigs the ADQxxx. Always honored regardless of

current trigger mode.

Returns 1 for successful operation and 0 for

failure.

Note:The return value does not tell if the device

was actually trigged, just that the command

was/was not sent ok to the ADQ device.

GetWaitingForTrigger

int ADQxxx_GetWaitingForTrigger(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, ADQ1600,

SDR14

Returns 1 if the ADQ device is waiting for a

trigger. 0 else.

GetAcquired

int ADQxxx_GetAcquired(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, ADQ1600,

SDR14

Returns 1 if the ADQ device has been trigged and

data has been acquiredfor one or more its records.

0 else.

GetAcquiredRecords

int ADQxxx_GetAcquiredRecords(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ108

Returns the number of records that have been

acquired.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 36(80)

Author Printed

Stefan Ahlqvist

GetAcquiredAll

int ADQxxx_GetAcquiredAll(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, ADQ1600,

SDR14

Returns 1 if the ADQ device has been trigged and

data has been acquired for all its records. 0

else.

GetTrigPoint

int ADQxxx_GetTrigPoint(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214

Returns the position in the data array where the

trig occurred.

GetTriggedCh

int ADQxxx_GetTriggedCh(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ208, SDR14, ADQ214,

ADQ212

Returns the channel that which the device was

trigged by.

Return value = 0 => None (if the device was

trigged in software trigger mode)

Return value = 1 => Channel A

Return value = 2 => Channel B

Return value = 4 => Channel C

Return value = 8 => Channel D

The trigged channel value is updated each time

ADQxxx_CollectRecord is called.

GetOverflow

int ADQxxx_GetOverflow(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214

Returns 1 if an overflow has occurred in the most

recent collected record. 0 if not.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 37(80)

Author Printed

Stefan Ahlqvist

6.3.4 ADQ Data Transfer Functions

Data Transfer Function Description

CollectDataNextPage

int ADQxxx_CollectDataNextPage(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, ADQ1600,

SDR14

Transfers the data from the internal memory

buffers of the physical ADQ to the ADQ-object.

ADQxxx_GetSamplesPerPage(..) samples are

collected.

The internal page counter in the ADQxxx is counted

forward one step.

1 <= pages <= ADQxxx_GetMaxPages(..)

Note: If you want to collect all samples stored, a

loop that collects “ADQxxx_GetMaxPages(..)” of

pages should be written.

Returns 1 for successful operation and 0 for

failure.

CollectRecord

int ADQxxx_CollectRecord(

void* adq_cu_ptr, int adqxxx_num,

unsigned int record_num)

Valid for: ADQ412, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, ADQ1600,

SDR14

MultiRecord mode only.

Transfers data from the internal memory buffers of

the ADQxxx device to the ADQxxx-object in the host

computer.

Collects the record specified by record_num.

0 <= record_num <= NofRecords-1Returns 1 for

successful operation and 0 for failure.

Data is made available in the buffer pointed to by

the GetPtrData

GetData

unsigned int ADQxxx_GetData(

void* adq_cu_ptr, int adqxxx_num,

void** target_buffers,

unsigned int target_buffer_size,

unsigned char target_bytes_per_sample,

unsigned int StartRecordNumber,

unsigned int NumberOfRecords,

unsigned char ChannelsMask,

unsigned int StartSample,

unsigned int nSamples,

unsigned char TransferMode)

Valid for: ADQ412, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, ADQ1600,

SDR14

Collects data from the device. Transfers data from

the internal memory buffers in the ADQ device

directly to the user-assigned buffers pointed to

by target_buffers.One buffer for each channel of

data.target_buffers can therefore be an array of

pointers, depending on how many channels the

capturing device has. This function is meant to be

used together with the function MultiRecordSetup.

target_buffer_sizeis the size of each buffer. This

must be equivalent to the total number of samples

for all records on each channelthat you want to

transfer. You might have collected a certain

number of records with a certain number of samples

for each record on the ADQ device. But you may

only want to transfer some of these records to the

PC. Thus, target_buffer_size should always be:

target_buffer_size = NumberOfRecords*nSamples

target_bytes_per_sampleis the size of each element

in the buffers. This parameter will depend on

which data format that is currently used and must

be big enough to contain the bit width of the

sample. If each sample has a bitwidth of, for

example, 14 bits then target_bytes_per_sample must

have a value of 2. Because 2 bytes (16 bits) is

the smallest amount of space that can contain a 14

bits sample. Currently used data format can be

obtained by using the GetDataFormat function.

StartRecordNumber is the record number to start

collecting data from. This value can be set

between zero and up to the parameter

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 38(80)

Author Printed

Stefan Ahlqvist

NumberOfRecords, which you had previously used to

call the MultiRecordSetup function with. For example,
if you have set up the ADQ device to collect 20

records. But you are only interested in

transferring the last 5 records, StartRecordNumber

should therefore be set to 14 (record index starts

from 0).

NumberOfRecords is the number of records to put in

the buffers starting from the record number set by

StartRecordNumber. The sum:

NumberOfRecords + StartRecordNumber

Must always be smaller than the amount of records

that you have collected in your ADQ device.

ChannelsMask is a bit-mask providing a set bit for

each channel to be fetched. In the case for ADQ214

for example, which has 2 channels, ChannelsMask

can be set to 0x1 for fetching data only from

channel A, or 0x2 for fecting data only from

channel B. A value of 0x3 for this parameter will

fetch data from both channels.

StartSample is the starting sample of each record

to fetch. Just as you can chose a starting point

from which record you want to transfer from an

array of records, this parameter allows you chose

the starting sample within each record that you

want to transfer

nSamples is the number of samples to fetch from

each record with the starting point set by

StartSample.

TransferMode is the transfer mode. Please set to

0x00 for normal data fetch operations.

Note: The buffers pointed to by target_buffers is

the users responsibility. If these are not

allocated correctly, the API will still write in

to these addresses.

Note: GetData is the recommended function for fast

record data transfers, rather than using

CollectRecord.

Returns 1 for successful operation and 0 for

failure.

GetDataWH

unsigned int ADQxxx_GetDataWH(

void* adq_cu_ptr, int adqxxx_num,

void** target_buffers,

void* target_headers,

unsigned int target_buffer_size,

unsigned char target_bytes_per_sample,

unsigned int StartRecordNumber,

unsigned int NumberOfRecords,

unsigned char ChannelsMask,

unsigned int StartSample,

unsigned int nSamples,

unsigned char TransferMode)

Valid for: ADQ412, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, ADQ1600,

SDR14

Collects data from the device with headers. See

documentation for GetData. The difference is only

one added argument, the target destination for

header data.

target_headersis the memory location where headers

will be written. The total amount of data that

will be written is 32 bytes times the number of

records to fetch specified in NumberOfRecords. If

set to NULL no headers will be fetched. Header

data for record #0 will be in bytes 0-31 and

header data for record #1 will be in bytes 32-63

and so forth.

Returns 1 for successful operation and 0 for

failure.

GetDataWHTS Collects data from the device with headers and

timestamps. See documentation for GetData. The

difference is only two added arguments, the target

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 39(80)

Author Printed

Stefan Ahlqvist

unsigned int ADQxxx_GetDataWHTS(

void* adq_cu_ptr, int adqxxx_num,

void** target_buffers,

void* target_headers,

void* target_timestamps,

unsigned int target_buffer_size,

unsigned char target_bytes_per_sample,

unsigned int StartRecordNumber,

unsigned int NumberOfRecords,

unsigned char ChannelsMask,

unsigned int StartSample,

unsigned int nSamples,

unsigned char TransferMode)

Valid for: ADQ412, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, ADQ1600,

SDR14

destination for header data and timestamp data.

target_headersis the memory location where headers

will be written. The total amount of data that

will be written is 32 bytes times the number of

records to fetch specified in NumberOfRecords. If

set to NULL no headers will be fetched.

target_timestampsis the memory location where

timestamps will be written. The total amount of

data that will be written is 8 bytes (one int64)

times the number of records to fetch specified in

NumberOfRecords. If set to NULL no timestamps will

be fetched.

Returns 1 for successful operation and 0 for

failure.

MemoryDump

unsigned int ADQxxx_MemoryDump(

void* adq_cu_ptr, int adqxxx_num,

unsigned int StartAddress,

unsigned int EndAddress,

unsigned char* buffer,

unsigned int* bufctr,

unsigned int transfersize)

Valid for: ADQ412, ADQ212, ADQ108,

ADQ112, ADQ114, ADQ214, SDR14, ADQ1600,

ADQ208

Transfers data from the internal memory buffers in

the ADQ device to the buffer buffer. It does not

parse data into samples, only transfers raw data

into the buffer.

StartAddress and EndAddress is defined in

128/256/512-bit (product dependent) segment

addresses and specifies which part of the memory

that shall be transferred.

StartAddress must be a multiple of 32, k*32

EndAddress must be a multiple of 32, (k*32)-1

EndAddress > StartAddress

The number of bytescollected is stored in *bufctr.

The memory space buffer used must be preallocated

for the correct size which is in.

transfersize is the used transfer size over the

interface. If set to NULL, default is used.

Returns 1 for successful operation and 0 for

failure.

Note: To retrieve product/settings dependent sizes

to know which DRAM addresses to read, you may use

the MultiRecordSetupGP function. To parse the data

at a later stage use the MemoryShadow function of

the API, together with GetData.

MemoryShadow

unsigned int ADQxxx_MemoryShadow(

void* adq_cu_ptr, int adqxxx_num,

void* MemoryArea,

unsigned int ByteSize)

Valid for: ADQ412, ADQ212, ADQ108,

ADQ112, ADQ114, ADQ214, SDR14, ADQ1600,

ADQ208

Sets the API to use a DRAM shadow (in the PC DRAM)

for parsing data rather than accessing the device

DRAM directly. This is used together with

MemoryDump to separate the tasks of transfer and

parsing for higher transfer rates, where parsing

is possible to perform offline.

MemoryArea pointer to memory area with ByteSize

allocated bytes. User is responsible for correct

allocation/deallocation of this area. If

MemoryArea is NULL, the shadow function is

deactivated.

Returns 1 for successful operation and 0 for

failure.

Note: To retrieve product/settings dependent sizes

to know which DRAM addresses to read, you may use

the MultiRecordSetupGP function. To parse the data

at a later stage use the MemoryShadow function of

the API, together with GetData.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 40(80)

Author Printed

Stefan Ahlqvist

SetTransferBuffers

unsigned int ADQxxx_SetTransferBuffers(

void* adq_cu_ptr, int adqxxx_num,

unsigned int NumberOfBuffers,

unsigned int BufferSize)

Valid for: ADQ412, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, ADQ1600,

SDR14, ADQDSP, DSU

Sets the number and size of data transfer buffers.

Can be used to optimize transfer performance for a

specific application. Must be given in multiples

of 512 bytes.

Note: When setting this value, make sure that the

cache size (SetCacheSize) is less or equal to

transfer buffer size.

Note: This setting function should rarely be used,

as the default value is working best for most

applications.

Note: This function allocates memory in the

Windows kernel space.

Returns 1 for successful operation and 0 for

failure.

SetTransferTimeout

unsigned int ADQxxx_SetTransferTimeout(

void* adq_cu_ptr, int adqxxx_num,

unsigned int TimeoutValue)

Valid for: ADQ412, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, ADQ1600,

SDR14, ADQDSP, DSU

Sets the timeout for data transfers. This is used

in situations where certain data amounts are

expected over the streaming interface at certain

update rates. This value should always be

significantly higher than the expected data rate,

to avoid problems with the communication link.

TimeoutValue is specified in milliseconds, and the

default setting is 1000 ms.

Note: This setting function should rarely be used,

as the default value is working best for most

applications.

Returns 1 for successful operation and 0 for

failure.

SetCacheSize

unsigned int ADQxxx_SetCacheSize(

void* adq_cu_ptr, int adqxxx_num,

unsigned int CacheSizeInBytes)

Valid for: ADQ412, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, ADQ1600,

SDR14

Sets the cache size of transfer of data. Can be

used to optimize transfer performance for a

specific application. Must be given in multiples

of 1024 bytes.

Note:When transferring small records one at the

time, use a small value.

Note: This setting function should rarely be used,

as the default value is working best for most

applications.

Note: The cache is not used when ADQ is in

streaming mode.

Returns 1 for successful operation and 0 for

failure.

GetStreamOverflow

int ADQxxx_GetStreamOverflow(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ212, ADQ112, ADQ114,

ADQ214, ADQ412, ADQ108, ADQ208, ADQ1600,

SDR14

Gets the FIFO overflow flag of the streaming FIFO.

When this is reported true, data is missing from

the stream

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 41(80)

Author Printed

Stefan Ahlqvist

GetTransferBufferStatus

unsigned int

ADQxxx_GetTransferBufferStatus

void* adq_cu_ptr, int adqxxx_num,

unsigned int* filled)

Valid for: ADQ212, ADQ112, ADQ114,

ADQ214, ADQ108, ADQ208, ADQ412, ADQ1600,

SDR14, ADQDSP, DSU

Stores the number of buffers available for

transferring in *filled. This function enables the

host application to balance the streaming read-out

to avoid overflows.

0 => No buffer can be read-out (call to

CollectDataNextPage not allowed)

1 – (n_of_buffers) => The number of buffers

available.

Returns 1 for successful operation and 0 for

failure.

Note: If the number is n_of_buffers, all buffers

are filled and result will be overflow if the

buffers are not read out.

GetPtrStream

void* ADQxxx_GetPtrStream(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ212, ADQ214, ADQ112,

ADQ114, ADQ412, ADQ108, ADQ208, ADQ1600,

SDR14

Returns a pointer to the data array of the stream.

Size of the data array is available using

ADQxxx_GetSamplesPerPage(…) after calling

ADQxxx_SetStreamStatus(…).

GetPtrData

int* ADQxxx_GetPtrData(

void* adq_cu_ptr, int adqxxx_num, int

channel)

Valid for: ADQ412, ADQ1600, ADQ108,

ADQ208, ADQ112, ADQ114, ADQDSP, SDR14,

DSU

Returns a pointer to the data array of a specific

channel (A=1, B=2, C=3, D=4).

Channel retrieved = channel

Note: ADQDSP C API call is not using the argument

channel

GetPtrDataChA

int* ADQxxx_GetPtrDataChA(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ214, ADQ212

Returns a pointer to the data array for channel A

of the most recent collected record.

Size of the data array = SamplesPerPage

GetPtrDataChB

int* ADQxxx_GetPtrDataChB(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ214, ADQ212

Returns a pointer to the data array for channel B

of the most recent collected record.

Size of the data array = SamplesPerPage

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 42(80)

Author Printed

Stefan Ahlqvist

6.3.5 ADQ StatusFunctions

Status Function Description

GetADQType

int GetADQType()

C++ only

Valid for: ADQ412, ADQ1600, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, ADQDSP,

SDR14, DSU

Returns an integer describing the device.

Typically usable only with the C++ API, when the

unit type of the ADQInterface* object can be

unknown.

GetErrorVector

int ADQxxx_GetErrorVector(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ1600, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, SDR14

Returns 0 if no error has been detected.

Otherwise non-zero. Bold-face marked conditions

are irreversible and needs a power-cycling.

Others may affect functionality in different

ways, but the ADQ board will continue to operate.

Bit 0: Board turned off - detected overheat

condition

Bit 1: Detected broken contact bridge between

FPGA #1 and #2

Bit 3: Detected fan fault

All detected error conditions will also cause the

front panel STATUS LED to flash slowly.

GetLastError

int ADQxxx_GetLastError(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ1600, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, ADQDSP,

SDR14, DSU

Returns 0 if no error in the API has been

detected. Otherwise non-zero.

Error codes are listed in section 5.

GetLvlTrigLevel

int ADQxxx_GetLvlTrigLevel(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ212, ADQ108, ADQ208,

ADQ112, ADQ114, ADQ214, ADQ1600, SDR14

Returns the level for which the level trigger

shall trig.

ADQ114/214:

-8192 <= Return value <= 8191 (14 bit data)

ADQ112:

-2048 <= Return value <= 2047 (12 bit data)

ADQ108/ADQ208:

-128 <= Return value <= 127 (8 bit data)

Other:

-2^31 <= Return value <= 2^31-1 (32 bit data)

GetLvlTrigEdge

int ADQxxx_GetLvlTrigEdge(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ212, ADQ108,ADQ208,

ADQ112, ADQ114, ADQ214, ADQ1600, SDR14

Returns the edge for which the level trigger

shall trig.

Return value = 1 => Rising edge

Return value = 0 => Falling edge

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 43(80)

Author Printed

Stefan Ahlqvist

GetLvlTrigChannel

int ADQxxx_GetLvlTrigChannel(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ212, ADQ214, ADQ208,

SDR14

Returns the channel for which the level trigger

trigs on.

ADQ412, ADQ212, ADQ214, ADQ208:

Return value = 0 => None

Return value = 1 => Channel A

Return value = 2 => Channel B

Return value = 4 =>Channel C

Return value = 8 =>Channel D

SDR14:

Return value = 0 => None

Return value = 3 => Channel A

Return value = 12 => Channel B

To trig on multiple channels add the channel code

for each individual channel. Examples for ADQ412:

Return value = 10 =>Both Channel B and D

Return value = 15 =>All Channels

GetSampleSkip

int ADQxxx_GetSampleSkip(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ112, ADQ114, ADQ214, ADQ212

Returns the current value of the sample-skip

unit. See SetSampleSkip for explanations of the

values.

GetSampleDecimation

int ADQxxx_GetSampleDecimation(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ214

Returns the current value of the sample

decimation unit. See SetSampleDecimation for

explanations of the values.

GetExternTrigEdge

int ADQxxx_GetExternTrigEdge(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214,

ADQ412, ADQ108,ADQ208, ADQ1600, SDR14

Returns the edge for which the external trigger

shall trig.

Return value = 1 => Rising edge

Return value = 0 => Falling edge

GetOutputWidth

int ADQxxx_GetOutputWidth

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ212, ADQ214, ADQ114,

ADQ112, ADQ108,ADQ208, ADQ1600, SDR14

Returns the width of output data in number of

bits.

GetNofChannels

int ADQxxx_GetNofChannels(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ212, ADQ214, ADQ114,

ADQ112, ADQ108,ADQ208, ADQ1600, SDR14

Returns the number of output channels for the

device.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 44(80)

Author Printed

Stefan Ahlqvist

GetPllFreqDivider

int ADQxxx_GetPllFreqDivider(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214

Returns the PLL-divider.

Clock frequency to the ADCs and sample rate is

calculated by:

ADQ214:

ADQ114:

ADQ112:

2 <= Return value <= 20

GetClockSource

int ADQxxx_GetClockSource(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ1600, ADQ212,

ADQ108,ADQ208, ADQ112, ADQ114, ADQ214,

SDR14

Returns the clock source for the ADQ device.

Return value = 0 => Internal clock source,

 Internal 10 MHz reference

Return value = 1 => Internal clock source,

 External 10 MHz reference

Return value = 2 => External clock source

GetGainAndOffset

unsigned int ADQxxx_GetGainAndOffset(

void* adq_cu_ptr, int adqxxx_num,

unsigned char Channel, int*Gain, int*

Offset)

Valid for: ADQ114, ADQ112, ADQ214,

ADQ212, ADQ1600, SDR14

Gets the current digital gain and offset which is

located directly after the sampling circuit. Note,

the returned settings are relative to the factory

calibrated settings. To override this

relativeness, set bit 7 of the Channel argument to

1.

Gain and Offset are pointers to 32-bit integers

where to write the results.

Maximum allowed values is 32767 and minimum

allowed value is -32768.

Gain is scaled by 10 bits i.e. 1024 corresponds to

unity gain.

Offset is scaled by codes i.e. 1 corresponds to 1

ADC code (multiplied by current Gain setting)

GetAfeSwitch

unsigned int ADQxxx_GetAfeSwitch(

void* adq_cu_ptr, int adqxxx_num,

unsigned char Channel, unsigned char*

afemode)

Valid for: ADQ214, ADQ212

Gets the setting of the AFE.

Channel A => Channel = 1

Channel B => Channel = 2

afemode is a pointer to an unsigned char where to

write the result.

Output values

afemode == 0 => Signal path in AC mode

afemode == 1 => Signal path in DC mode

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 45(80)

Author Printed

Stefan Ahlqvist

GetExternalClockReferenceStatus

unsigned int

ADQxxx_GetExternalClockReferenceStatus(

void* adq_cu_ptr, int adqxxx_num, unsigned

int* extrefstatus)

Valid for: ADQ214, ADQ212, ADQ114, ADQ112

When using an external clock reference, this API

returns the status of this reference.

Returned in the user-allocated extrefstatus

(unsigned int)

extrefstatus = 1 => External reference available

extrefstatus = 0 => External reference not

detected

GetTriggerMode

int ADQxxx_GetTriggerMode(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ1600, ADQ212,

ADQ108,ADQ208,ADQ112, ADQ114, ADQ214, SDR14

Returns the trigger mode of the ADQ device.

All devices:

trig_mode = 1 => Software trigger only mode

trig_mode = 2 => External trigger mode

trig_mode = 3 => Level trigger mode

trig_mode = 4 => Internal trigger mode

ADQ208:

trig_mode = 7 => External DB1 trigger mode

GetUSBAddress

unsigned int ADQ214_GetUSBAddress(void*

adq_cu_ptr, int adq214_num)

Valid for: ADQ412, ADQ1600, ADQ212, ADQ108,

ADQ208,ADQ112, ADQ114, ADQ214, SDR14

Returns the bus address of Windows USBDI stack.

If the ADQ device is connected to the host via a

PXIe interface, 0 is returned.

GetPCIeAddress

unsigned int ADQxxx_GetPCIeAddress(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ1600, ADQ212, ADQ108,

ADQ208,ADQ112, ADQ114, ADQ214, SDR14

Returns a specific address PXIe address. If the

ADQ device is connected to the host via a USB

interface, 0 is returned.

GetRevision

int* ADQxxx_GetRevision(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412,ADQ1600, ADQ212, ADQ108,

ADQ208,ADQ112, ADQ114, ADQ214, ADQDSP,

SDR14, DSU

Returns the revision of the ADQ device. Fields 0-

2 contain information for FPGA #2(Comm FPGA) and

fields 3-5 contain information for FPGA #1 (Alg

FPGA). The returned field (int* revision) is 6

positions long and contains:

revision[0 and 3] = revision number

revision[1 and 4]: 0 => SVN Managed

1 => Local Copy

revision[2 and 5]: 0 => SVN Updated

1 => Mixed Revision

Where revisionis the returned pointer.

GetBoardSerialNumber

char* ADQxxx_GetBoardSerialNumber(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ1600, ADQ212, ADQ108,

ADQ208,ADQ112, ADQ114, ADQ214, SDR14

Returns the serial number of the ADQ device. The

returned field (char* serialno) is 16 positions

long and contains a null-terminated string.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 46(80)

Author Printed

Stefan Ahlqvist

GetCardOption

const char* ADQxxx_GetCardOption(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ1600, SDR14, ADQ208

Returns a null terminated string containing card

option.

Example: “-3G” for ADQ412 specifies ADQ412-3G

card option.

GetADQDSPOption

const char* ADQxxx_GetADQDSPOption(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ1600, SDR14, ADQ108,

ADQ208, ADQDSP, DSU

Returns a null terminated string containing

motherboard options.

Example: “-PXIe” for a PXIe form-factor

motherboard

GetTriggerInformation

int ADQxxx_GetTriggerInformation(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214

Returns the enhanced trigger accuracy

information.

The bits in the returned value holds the

information and is decoded as:

output[0:9] = Reserved for future use

output[10:11] = Enhanced trigger accuracy vector

output[12:31] = Reserved for future use

Where outputis the returned value.

Note: This information is only valid if the ADQ

device is set to External trigger mode.

GetTrigTime

unsigned long long ADQxxx_GetTrigTime(

void* adq_cu_ptr,int adq114_num)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214,

ADQ412, ADQ1600, SDR14

Returns the timestamp counter value. The Result

depends on the Trig Time Mode.

SYNC_ON=cycles*2^2+start_val+trig_val

SYNC_OFF=syncs*2^42+cycles*2^2+start_val+trig_val

GetTrigTimeCycles

unsigned long long

ADQxxx_GetTrigTimeCycles(

void* adq_cu_ptr, int adq114_num)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214,

ADQ412, ADQ1600, SDR14

Returns the cycle counter value of the time

stamp.

GetTrigTimeSyncs

unsigned intADQxxx_GetTrigTimeSyncs(

void* adq_cu_ptr, int adq114_num)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214,

ADQ412, ADQ1600, SDR14

Returns the sync counter value of the time stamp.

GetTrigTimeStart

unsigned int ADQxxx_GetTrigTimeStart(

void* adq_cu_ptr, int adq114_num)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214,

ADQ412, ADQ1600, SDR14

Returns the start pulse value of the time stamp.

It is a two bit value of the start pulse

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 47(80)

Author Printed

Stefan Ahlqvist

GetMultiRecordHeader

unsigned int* ADQxxx_GetMultiRecordHeader(

void* adq_cu_ptr, int adq114_num)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214

Returns the pointer to the Multi Record Header

from the record last collected. The Multi Record

Header contains 8 unsigned int values.

GetTemperature

unsigned int ADQxxx_GetTemperature(

void* adq_cu_ptr, int adqxxx_num,

int addr)

Valid for: ADQ412, ADQ1600, ADQ212, ADQ108,

ADQ208,ADQ112, ADQ114, ADQ214, ADQDSP,

SDR14, DSU

Reads and returns the current on-board

temperatures.Temperatures are returned as the

actual temperature in Celsius times 256.

Addressing 112/114/214/212:

addr = 1: Temperature sensor #1 (comm. FPGA)

addr = 2: Temperature sensor #2 (alg. FPGA)

Addressing 108/412/208/SDR14/DSU/1600/DSP:

addr = 0: Sensor controller local temp

addr = 1: Temperature sensor #1 (ADC0)

addr = 2: Temperature sensor #2 (ADC1)

addr = 3: Temperature sensor #3 (FPGA)

addr = 4: Temperature sensor #4 (PCB)

GetStreamStatus

int ADQxxx_GetStreamStatus(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214,

ADQ412, ADQ108, ADQ208,ADQ1600, SDR14

Returns the streaming status.

Return value = 0 => Streaming disabled

Return value = 7 => Streaming of all data enabled

Return value = 3 => Streaming of all data on

channel A enabled (valid for ADQ214 only)

Return value = 5 => Streaming of all data on

channel B enabled (valid for ADQ214 only)

GetDataFormat

unsigned int ADQxxx_GetDataFormat(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ1600, ADQ108,

ADQ208,ADQ212, ADQ112, ADQ114, ADQ214,

SDR14

Returns the data format set for the device. See

SetDataFormat for an explanation of the values.

GetRecordSize

unsigned int ADQxxx_GetRecordSize(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ212,ADQ112, ADQ114, ADQ214

MultiRecord mode only.

Returns the record size set in the ADQ device.

The returned value is given in number of samples.

Note: per channel if applicable (ADQ214).

GetNofRecords

unsigned int ADQxxx_GetNofRecords(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214

MultiRecord mode only.

Returns the number of records set in the ADQ

device.

Note: per channel if applicable (ADQ214).

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 48(80)

Author Printed

Stefan Ahlqvist

GetSamplesPerPage

unsigned int ADQxxx_GetSamplesPerPage(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ1600, ADQ212, ADQ108,

ADQ208, ADQ112, ADQ114, ADQ214, SDR14

Returns the number of samples of each page set in

the ADQ device.

Used with CollectDataNextPage/CollectRecord to

get information on number of samples per call.

Note: per channel if applicable.This figure may

change when altering the acquisition settings.

GetBcdDevice

unsigned int ADQxxx_GetBcdDevice(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214

Returns the PCB revision of the ADQ device.

IsPCIeDevice

int ADQxxx_IsPCIeDevice(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214,

ADQ108, ADQ208, ADQ1600, ADQ412, SDR14

Returns 1 if the ADQ device is configured for

PXIe, else 0.

IsUSBDevice

int ADQxxx_IsUSBDevice(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214,

ADQ108, ADQ208, ADQ1600, ADQ412, SDR14

Returns 1 if the ADQ device is configured for

USB, else 0.

IsAlive

unsigned int ADQxxx_IsAlive(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214

Pings the ADQ unit. Returns 1 if the ADQ device

is answering the ping request, else 0.

IsStartedOK

unsigned int ADQxxx_IsStartedOK(

void* adq_cu_ptr, int adqxxx_num)

C++ only

Valid for: ADQ412, ADQ1600, ADQ108, ADQ208,

ADQ212, ADQ112, ADQ114, ADQ214, SDR14

Checks if the ADQ unit started correctly. Returns

1 if the ADQ device has been started OK, else 0.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 49(80)

Author Printed

Stefan Ahlqvist

GetNGCPartNumber

const char* ADQxxx_GetNGCPartNumber(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ1600, ADQ108, ADQ208,

SDR14, ADQDSP, DSU

Read out the part number of the framework NGC or

NGC package which was used to build the firmware.

This part number cannot be modified from inside

an ADQ DevKit (apart from replacing the NGC

files).

The result is returned as a pointer to a null-

terminated string, consisting of three three-

digit numbers followed by a revision letter. For

example:

400-200-002-A

Older firmware revisions do not contain part

number registers and will always be read out as

000-000-000-A.

GetUserLogicPartNumber

const char* ADQxxx_GetUserLogicPartNumber(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ1600, ADQ108, ADQ208,

SDR14, ADQDSP, DSU

Read out the part number of the user logic file

which was used to build the firmware.

This part number may be modified from inside the

DevKit, using either the set_userlogicpartnumber

command while building the DevKit, or by

modifying the assignment statements to the

registers in the user logic module. This allows

the DevKit customer to keep track of different

firmware types and revisions.

The result is returned as a pointer to a null-

terminated string, consisting of three three-

digit numbers followed by a revision letter. For

example:

400-013-011-A

Older firmware revisions do not contain part

number registers and will always be read out as

000-000-000-A.

GetPCIeLinkWidth

Unsigned int ADQxxx_GetPCIeLinkWidth(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ1600, ADQ108,ADQ208,

SDR14, ADQDSP, DSU

Returns the number of lanes used for the PCIe

connection between ADQ and host. If the ADQ is

not connected through PCIe, this function returns

0.

GetPCIeLinkRate

Unsigned int ADQxxx_GetPCIeLinkRate(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ1600, ADQ108, ADQ208,

SDR14, ADQDSP, DSU

Returns the generation ofthe PCIe connection

between ADQ and host. If the ADQ is not connected

through PCIe, this function returns 0.

GetProductFamily

Unsigned int ADQxxx_GetPCIeLinkRate(

void* adq_cu_ptr, int adqxxx_num, unsigned

int* family)

Valid for: ADQ412, ADQ1600, ADQ108, ADQ208,

SDR14, ADQDSP, DSU, ADQ214, ADQ212, ADQ114,

ADQ112

Get the product family number for the digitizer.

A V6 digitizer returns the number 6, a V5

digitizer returns the number 5.

Pass a pointer to an unsigned int where the

number is to be stored, via the “family”

argument.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 50(80)

Author Printed

Stefan Ahlqvist

6.4 ADQ Special Block Functions

Special block functions are not available on all units. These functions relate to specific IP blocks which may
be added on some unit types.

6.4.1 Waveform Averaging and Triggered Streaming Block Functions

ADQ Special Block Function Description

WaveformAveragingSetup

unsigned int ADQxxx_WaveformAveragingSetup(

void* adq_cu_ptr, int adqxxx_num, unsigned

int NofWaveforms, unsigned int

NofSamples,unsigned int NofPreTrigSamples,

unsigned int NofHoldOffSamples,

unsigned int WaveformAveragingFlags)

Valid for: ADQ214, ADQ212, ADQ112, ADQ114,

ADQ412, ADQ1600

Sets up the waveform averaging block on the ADQ.

Please consult the example for waveform averaging

to obtain details of the execution flow.

NofWaveforms is the number of waveforms to

average

NofSamples is the number of samples to average

NofPreTrigSamples is the number of pretrigger

samples to average

NofHoldOffSamples is the number of samples to

hold off after the trigger event.

WaveformAveragingFlags specify:

0x0001 Compensate data path for external trigger

0x0002 Compensate data path for level trigger

0x0004 Enable fastest readout

0x0008 Enable medium paced readout

0x0010 Enable slow readout

0x0020 Enable data path for using level trigger

0x0040 Enable the waveform get function

0x0080 Enable automatic readout and arm

 (Used for streaming continuously)

0x0400 Immediate readout mode

0x1000 Chose channel A as input when running WFA

in one channel mode (ADQ214)

0x2000 Chose channel B as input when running WFA

in one channel mode (ADQ214)

Note: When running in one channel input mode (to

gain longer record length) only ONE channel can

be chosen. Special custom firmware is required to

use this mode. If both channels have been set OR

no channel has been set when using such a

firmware, default channel will be A. On standard

firmware without support for this one channel

input mode, these two flags will have no meaning.

Note: On ADQ114 and ADQ112 the maximum length

waveform is 32k samples and maximum waveform

count is 64k. Pretrigger, Holdoff and sample

length is chosen by 4 sample increments.

Note: If streaming over USB is used, one should

preferably choose a sample size of the waveform

that equals a packet size of 512 bytes. Each

averaged sample is 4 bytes, therefore sample

sizes should be chosen as 128 sample increments.

Note: Enabling the waveform get function will

change the transfer settings of the device.

Note: The packet streaming block and waveform

averaging block cannot be used at the same time.

Note: Immediate readout is only available on

ADQ214, ADQ212, ADQ114 and ADQ112 at the moment.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 51(80)

Author Printed

Stefan Ahlqvist

WaveformAveragingArm

unsigned int ADQxxx_WaveformAveragingArm(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ214, ADQ212, ADQ112, ADQ114,

ADQ412, ADQ1600

Arms the waveform averaging. After this triggers

will be accepted. If automatic readout and arm is

turned on, readout will occur once average is

done and a new average will restart when readout

is done.

WaveformAveragingDisarm

unsigned int

ADQxxx_WaveformAveragingDisarm(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ214, ADQ212, ADQ112, ADQ114,

ADQ412, ADQ1600

Disarms the averaging block and puts it in bypass

mode.

WaveformAveragingGetWaveform

unsigned int

ADQxxx_WaveformAveragingGetWaveform(

void* adq_cu_ptr, int adqxxx_num,

int* waveformdata)

Valid for: ADQ214, ADQ212, ADQ112, ADQ114,

ADQ412, ADQ1600

Gets the entire waveform into assigned memory

location. Performs all necessary communication

with device to get waveform. This can only be

done if readout of data is available, which

should be checked by the status function.

Data is returned in the signed 32-bit memory

space given to the function. The user is entirely

responsible for having allocated this space

properly.

Please consult the example for waveform averaging

to obtain details of the execution flow.

WaveformAveragingGetStatus

unsigned int

ADQxxx_WaveformAveragingGetStatus(

void* adq_cu_ptr, int adqxxx_num, unsigned

char* ready, unsigned int* nofrecords,

unsigned char* inidle)

Valid for: ADQ214, ADQ212, ADQ112, ADQ114,

ADQ412, ADQ1600

Gets the status of the averaging block.

Returns 1 in ready if data readout is available.

If ready is NULL, this flag will not be read.

Returns the number of accumulated records in

nofrecords. If nofrecords is NULL, this flag will

not be read.

Returns the in idle status of WFA in inidle. If

inidle is NULL, this flag will not be read.

WaveformAveragingShutdown

unsigned int

ADQxxx_WaveformAveragingShutdown(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ214, ADQ212, ADQ112, ADQ114,

ADQ412

Issues shut down for waveform averaging. Used to

gracefully stop the auto automatic readout and

arm feature mode.

After issuing shutdown, please monitor and wait

for the in_idle signal of the

WaveformAveragingGetStatus command to go high

before starting again.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 52(80)

Author Printed

Stefan Ahlqvist

TriggeredStreamingSetupV5

unsigned int

ADQxxx_TriggeredStreamingSetupV5(void*

adq_cu_ptr, int adqxxx_num, unsigned int

SamplePerRecord, unsigned int ArmMode,

unsigned int ReadOutSpeed, unsigned int

Channel)

Valid for: ADQ214

Setup data acquisition using the streaming

interface and trigger every record with the

available trigger modes. This function is

depending on the waveform averaging block as an

intermediate storage space and will only work on

firmware with the modified waveform averaging

block. Please consult the example for Triggered

Streaming for details of the execution flow.

SamplePerRecordis the number of samples per

record to be collected. If streaming over USB is

used, one should preferably choose number of

sample perrecord that equals apacket size of 512

bytes. Each sample is 2 bytes (16 bits),

therefore record sizes should be chosen with 256

sample increments.

ArmMode:

0 = Manual re-arm and readout

1 = Auto re-arm and readout

Manual re-arm mode will collect a record, signal

to the user that a record has been collected and

wait for the user to read out the record. Reading

out a record manually is done by calling the

function TriggeredStreamingGetWaveform. After

reading out the acquired record the user must

also re-arm the triggered streaming block by

calling the function TriggeredStreamingArmbefore

a new record can be acquired.

Auto re-arm mode will automatically push the

acquired record through the streaming interface

and re-arm itself to collect the next record. If

the user does not read the data or cannot read

the data fast enough, the streaming interface

will be overflown. Auto re-arm mode still

requires to be armed the first time by calling

the function TriggeredStreamingArm.

ReadOutSpeed:

0 = Slow readout speed

1 = Medium readout speed

2 = Fast readout speed

ReadOutSpeed controls how fast an acquired record

is being pushed into the streaming interface.

This is useful if a host system or the hardware

interface is too slow to take care of the data

produced by the triggered streaming block. Using

the USB interface for example, it might be

difficult to collect long records with moderate

trigger rate without causing overflow. Setting

the readout speed to slower mode will overcome

this issue. This however will also decrease the

overall transfer speed.

Channel parameter specifies from which channel

the data will be streamed from.

1 = Channel A

2 = Channel B

Note: Channel should be set to 0 on standard

firmware which does not support one channel mode

Note: Manual re-arm and readout will change the

transfer settings of the device.

Note: Packet streaming and triggered streaming

cannot be used at the same time.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 53(80)

Author Printed

Stefan Ahlqvist

TriggeredStreamingArmV5

unsigned int

ADQxxx_TriggeredStreamingArmV5(void*

adq_cu_ptr, int adqxxx_num)

Valid for: ADQ214

Arms Triggered Streaming. After this command,

triggers will be accepted. If automatic re-arm

and readoutis turned on, readout will occur once

a record is collected and a new record will be

collected when readout is done.

TriggeredStreamingDisarmV5

unsigned int

ADQxxx_TriggeredStreamingDisarmV5(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ214

Disarms the Triggered Streaming block and puts it

in bypass mode.

TriggeredStreamingGetStatusV5

unsigned int

ADQxxx_TriggeredStreamingGetStatusV5(

void* adq_cu_ptr, int adqxxx_num, unsigned

char* ready, unsigned int*

nofrecordscompleted, unsigned char*

in_idle)

Valid for: ADQ214

Gets the status of the Triggered Streaming block.

Returns 1 in ready if data readout is available.

If ready is NULL, this flag will not be read.

Returns the number of acquired records in

nofrecordscompleted. If nofrecordscompleted is

NULL, this flag will not be read.

Returns the in idle status in in_idle. If in_idle

is NULL, this flag will not be read.

TriggeredStreamingGetWaveformV5

unsigned int

ADQxxx_TriggeredStreamingGetWaveformV5(void

* adq_cu_ptr, int adqxxx_num, short*

waveform_data_short)

Valid for: ADQ214

Gets the entire record into assigned memory

location. Performs all necessary communication

with device to get waveform. This can only be

done if readout of data is available, which

should be checked by the status function.

Data is returned in the signed 16-bit memory

space given to the function. The user is entirely

responsible for having allocated this space

properly.

Please consult the example for Triggered

Streaming for details of the execution flow.

HasTriggeredStreamingFunctionality

unsigned int

ADQxxx_HasTriggeredStreamingFunctionality(

void* adq_cu_ptr,

int adqxxx_num)

Valid for: ADQ412

Asks the ADQ whether it has the triggered

streaming functionality. This function is always

called in TriggeredStreamingSetup, and will cause

an error in that function if the ADQ-firmware is

not compatible.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 54(80)

Author Printed

Stefan Ahlqvist

TriggeredStreamingSetup

unsigned int

ADQxxx_TriggeredStreamingSetup(

 void* adq_cu_ptr,

 int adqxxx_num,

 unsigned int NofRecords,

 unsigned int NofSamples,

 unsigned int NofPreTrigSamples,

 unsigned int NofHoldOffSamples,

 unsigned char ChannelsMask)

Valid for: ADQ412

Sets up Triggered Streaming, a function used to

rapidly trigger short data collections.

Triggering may be done either individually for

each channel (with level trigger), or for all

channels at the same time (other trigger modes).

Data is output one channel at a time. Readout is

easiest done with the function

GetTriggeredStreamingRecords.

NofRecords is the number of times to trigger a

data collection for each active channel. From 1

to 2
32
-2 records. 2

32
-1 is a special value, that

enables infinite collection.

NofSamples is the number of samples to collect

for each record. A number of these samples will

be overwritten by the record header. For ADQ412

this number is 8 in non-interleaved mode and 16

in interleaved mode. For ADQ412 NofSamples is

maximum 65536 in non-interleaved mode and 131072

in interleaved mode. Must be set in multiples of

32.

NofPreTrigSamples is the number of samples to

collect from before the trigger arrives. When

using pre-trigger, NofHoldoffSamples should be

set to 0.

The pre-trigger value is internally rounded

downwards to a multiple of a constant factor. For

ADQ412 this factor is 8 in non-interleaved mode

and 16 in interleaved mode.

NofHoldOffSamples is the number of samples to

ignore after the trigger arrives. When this is

used, NofPreTrigSamples should be 0. Holdoff

affects the rearm time in a negative way. For

fast triggering, NofHoldoffSamples should be set

to 0.

The holdoff value is internally rounded downwards

to a multiple of a constant factor. For ADQ412

this factor is 8 in non-interleaved mode and 16

in interleaved mode.

ChannelsMask is used to specify from which

channels to collect data. Bit 0 enables channel

A, bit 1 channel B and so forth. For example on

ADQ412, ChannelsMask = 0xF enables all channels

while ChannelsMask = 0x3 enables only channel A

and B.

Note: To enable streaming of data over the

physical interface, SetStreamStatus(0x7) must be

called after TriggeredStreamingSetup.

Note: To enable storage in the on-board DRAM,

SetStreamStatus(0x9) must be called after this

function. This requires the use of MemoryDump to

read out the data later on and MemoryShadow to

tell GetTriggeredStreamingRecords to look at the

dumped data.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 55(80)

Author Printed

Stefan Ahlqvist

SetTriggeredStreamingHeaderRegister

unsigned int

ADQxxx_SetTriggeredStreamingHeaderRegister(

 void* adq_cu_ptr,

 int adqxxx_num,

 char Registervalue)

Valid for: ADQ412

Puts the user-defined 8-bit value Registervalue

in the Triggered Streaming record headers. Useful

for keeping track of different measurements and

debugging purposes.

SetTriggeredStreamingHeaderSerial

unsigned int ADQxxx_

SetTriggeredStreamingHeaderSerial(

 void* adq_cu_ptr,

 int adqxxx_num,

 unsigned int SerialNumber)

Valid for: ADQ412

Overwrites the SerialNumber field in the

Triggered Streaming-header with a user-specified

value. Must be called after

TriggeredStreamingSetup to have an affect.

TriggeredStreamingArm

unsigned int ADQxxx_TriggeredStreamingArm(

 void* adq_cu_ptr,

 int adqxxx_num)

Valid for: ADQ412

Arms triggered streaming. Must be called after

TriggeredStreamingSetup in order to enable data

collection.

TriggeredStreamingDisarm

unsigned int

ADQxxx_TriggeredStreamingDisarm(

 void* adq_cu_ptr,

 int adqxxx_num)

Valid for: ADQ412

Disarms triggered streaming.

GetTriggeredStreamingRecordSizeBytes

unsigned int

ADQxxx_GetTriggeredStreamingRecordSizeBytes

(

 void* adq_cu_ptr,

 int adqxxx_num)

Valid for: ADQ412

Returns the number of bytes needed to store the

actual samples (without header) from a record.

GetTriggeredStreamingHeaderSizeBytes

unsigned int

ADQxxx_GetTriggeredStreamingHeaderSizeBytes

(

 void* adq_cu_ptr,

 int adqxxx_num)

Valid for: ADQ412

Returns the size of the header. This parameter is

constant at 16 bytes.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 56(80)

Author Printed

Stefan Ahlqvist

TriggeredStreamingGetStatus

unsigned int

ADQxxx_TriggeredStreamingGetStatus(

 void* adq_cu_ptr,

 int adqxxx_num,

 unsigned int* InIdle,

 unsigned int* TriggerSkipped,

 unsigned int* Overflow)

Valid for: ADQ412

Returns status parameters at the poiters sent to

the function:

InIdle: 1 if no collection is currently being

made.

TriggerSkipped: A vector of a bit for each

channel, each indicating if a trigger was skipped

by the particular channel due to the module not

being able to buffer an extra record.

Overflow: Indicates that an overflow occurred in

the data buffering, may cause data to be lost.

TriggeredStreamingGetNofRecordsCompl
eted

unsigned int

ADQxxx_TriggeredStreamingGetNofRecordsCompl

eted(

 void* adq_cu_ptr,

 int adqxxx_num,

 unsigned int ChannelsMask,

 unsigned int* NofRecordsCompleted)

Valid for: ADQ412

Reads how many records that have been completed

for one or more channels

ChannelsMask: Mask to select which channel(s) to

read from. Bit 0 selects channel A, bit 1 selects

channel B, and so forth.

NofRecordsCompleted: Pointer to where to store

the result. All selected channels are added

together.

Example: For an ADQ412, channel A has completed 4

records and all other channels have completed 3

records. Using ChannelsMask = 0x7 (read from

channels C, B & A) will result in

NofRecordsCompleted* = 10.

GetTriggeredStreamingRecords

unsigned int

ADQxxx_GetTriggeredStreamingRecords(

 void* adq_cu_ptr,

 int adqxxx_num,

 unsigned int NofRecordsToRead,

 void** data_buf,

 void* header_buf,

 unsigned int* NofRecordsRead)

Valid for: ADQ412

Collects a number of Trigger-Streaming records

from the ADQ and stores the result at user-

specified memory spaces. The records are fetched

one channel at a time, in the order of

collection.

NofRecordsToRead: specifies the number of records

to read from the ADQ. The records arrive in the

order of collection.

data_buf: pointer to different buffers, one for

each channel of the device, where the actual data

is output (without headers). If multiple records

are collected from a channel, these are simply

stored after eachother in the buffer.

The user must allocate these buffers.

header_buf: pointer to a buffer where the headers

are stored in order. In level trigger mode this

information is needed to determine from which

buffer in data_buf to read the data, as the

channels collect data individually. For other

modes, the channel order is always A,B,C,D for

ADQ412 if all channels are enabled.

The user must allocate this buffer.

NofRecordsRead: pointer to an integer where the

function returns the number of records that were

collected.

Note: When streaming data to host,

GetTriggeredStreamingRecords assumes that the

buffer size of the transfer buffers have been set

to the size of a record during setup. This is

done by calling the function SetTransferBuffers.

If the total amount of data that is to be

collected is small enough, the number of buffers

should match the the total number of records to

collect. This removes the risk of overflow due to

full DMA buffers.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 57(80)

Author Printed

Stefan Ahlqvist

ParseTriggeredStreamingHeader

unsigned int

ADQxxx_ParseTriggeredStreamingHeader(

 void* adq_cu_ptr,

 int adqxxx_num,

 void* HeaderPtr,

 unsigned long long* Timestamp,

 unsigned int* Channel,

 unsigned int* ExtraAccuracy,

 int* RegisterValue,

 unsigned int* SerialNumber,

 unsigned int* RecordCounter)

Valid for: ADQ412

Reads a Triggered Streaming-header and returns

the values.

HeaderPtr: Pointer to the first byte of the

header to parse.

Timestamp: Pointer to where to return the value

of the internal time counter stored in the

header. Useful for knowing when a record was

triggered.

Channel: Pointer to where to return the channel

that was read. Channel 1 = A, 2 = B, 4 = C, and 8

= D.

ExtraAccuracy: Not currently used.

RegisterValue: Pointer to where to return the

register value that was stored in the header. The

value may be specified using

SetTriggeredStreamingHeaderRegister.

SerialNumber: Pointer to where to return the

serial number of the board. The value may be

overridden using

SetTriggeredStreamingHeaderSerial.

RecordCounter: Pointer to where to return the

record number stored in the header. This value

starts at 0 and is then incremented for each

record. If infinite streaming is used, this value

will wrap back to 0 after 131072 records have

been collected for the specific channel.

WaveformAveragingParseDataStream
unsigned int

ADQxxx_WaveformAveragingParseDataStream(

 unsigned int samples_per_record,

 int* data_stream,

 int** data_target)

Valid for: ADQ412, ADQ1600, SDR14, ADQ214,

ADQ212, ADQ114, ADQ112

Parses a buffer filled with a single record of

streamed WFA data, and stores it into a set of

target buffers, one per channel.

samples_per_record = Number of samples per

channel in the buffer

data_stream = Pointer to the buffer containing

data to be parse

data_target = Pointer to an array of pointers,

which in turn point to an allocated buffer for

each channel. Example:

data_target[0] = pointer to a buffer which can

hold (samples_per_record) samples of data for

channel A

data_target[1] = pointer to a buffer which can

hold (samples_per_record) samples of data for

channel B

…etc

WaveformAveragingSoftwareTrigger
unsigned int
ADQxxx_WaveformAveragingSoftwareTrigger()

Valid for: ADQ412, ADQ1600, SDR14

Issue a software trigger to the WFA module. Only

valid for V6 digitizers. For V5 digitizers, the

SWTrig() command should be used instead.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 58(80)

Author Printed

Stefan Ahlqvist

6.4.2 Packet Streaming Functions

ADQ Special Block Function Description

PacketStreamingSetup

unsigned int ADQxxx_PacketStreamingSetup(

void* adq_cu_ptr, int adqxxx_num, unsigned

int PacketSizeSamples, unsigned int

NofPreTrigSamples, unsigned int

NofHoldoffSamples)

Valid for: ADQ214

Sets up the packet streaming block on the ADQ.

PacketSizeSamples is the number of samples in

each package

NofPreTrigSamples is the number of samples to

keep from before the trigger event.

NofHoldOffSamples is the number of samples to

hold off after the trigger event.

Note: ADQ214: Packet size, Pretrig and Holdoff

are chosen by 2 sample increments.

Note: If streaming over USB is used, one should

preferably choose a sample size of the waveform

that equals a packet size of 512 bytes. Each

averaged sample is 4 bytes, therefore sample

sizes should be chosen as 128 sample increments.

Also, best practice is to use SetTransferBuffers

to complete each packet independently, i.e. set

the transfer buffer size to the expected number

of bytes of each packet.

Note: The packet streaming block and waveform

averaging block cannot be used at the same time.

Returns 1 for successful operation and 0 for

failure.

PacketStreamingArm

unsigned int ADQxxx_PacketStreamingArm(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ214

Arms the packet streaming. Packets will be pushed

on the data interface for each trigger.

Returns 1 for successful operation and 0 for

failure.

PacketStreamingDisarm

unsigned int ADQxxx_PacketStreamingDisarm(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ214

Disarms the packet streaming block and puts it in

bypass mode.

Returns 1 for successful operation and 0 for

failure.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 59(80)

Author Printed

Stefan Ahlqvist

6.4.3 Interleaving IP Block Functions

ADQ Special Block Function Description

ResetInterleavingIP

unsigned int ADQxxx_ResetInterleavingIP(

void* adq_cu_ptr, int adqxxx_num, unsigned

char IPInstanceAddr);

Valid for: ADQ112, ADQ114, ADQ412, ADQ1600,

SDR14

Resets the interleaving IP block.

Note: ADQ112/ADQ114 contains one single instance

addressed by 0. ADQ412 contains two instances

addressed by 0 and 1.

GetInterleavingIPCalibration

unsigned int

ADQxxx_GetInterleavingIPCalibration(

void* adq_cu_ptr, int adqxxx_num, unsigned

char IPInstanceAddr, unsigned int*

calibration);

Valid for: ADQ112, ADQ114, ADQ412, ADQ1600,

SDR14

Resets the interleaving IP block.

calibration is an area of memory to place

calibration in. Provide at least 8kbyte for this

area, i.e. at least 2048 32-bit integers.

SetInterleavingIPCalibration

unsigned int

ADQxxx_SetInterleavingIPCalibration(

void* adq_cu_ptr, int adqxxx_num, unsigned

char IPInstanceAddr, unsigned int*

calibration);

Valid for: ADQ112, ADQ114, ADQ412, ADQ1600,

SDR14

Resets the interleaving IP block.

calibration is an area of memory where the

calibration to set is stored in. The memory

contents must be fetched by

GetInterleavingIPCalibration. Placing any other

content will cause unpredictable results.

GetInterleavingIPBypassMode

unsigned int

ADQxxx_GetInterleavingIPBypassMode(

void* adq_cu_ptr, int adqxxx_num, unsigned

char IPInstanceAddr, unsigned int*

bypassflag);

Valid for: ADQ112, ADQ114, ADQ412, ADQ1600,

SDR14

Gets the current mode, whether the IP is bypassed

or not. Result is returned in bypassflag.

SetInterleavingIPBypassMode

unsigned int

ADQxxx_SetInterleavingIPBypassMode(

void* adq_cu_ptr, int adqxxx_num, unsigned

char IPInstanceAddr, unsigned int

bypassflag);

Valid for: ADQ112, ADQ114, ADQ412, ADQ1600,

SDR14

Sets the current mode, whether the IP is bypassed

or not. Set by input argument bypassflag.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 60(80)

Author Printed

Stefan Ahlqvist

GetInterleavingIPEstimationMode

unsigned int

ADQxxx_GetInterleavingIPEstimationMode(

void* adq_cu_ptr, int adqxxx_num, unsigned

char IPInstanceAddr, unsigned int*

updatetype);

Valid for: ADQ112, ADQ114, ADQ412, ADQ1600,

SDR14

Gets the current mode, whether the IP is allowed

to perform parameter updates (background

calibration) or not and what parameter update

mode to use.

Result is returned in updateflag.

SetInterleavingIPEstimationMode

unsigned int

ADQxxx_SetInterleavingIPEstimationMode(

void* adq_cu_ptr, int adqxxx_num, unsigned

char IPInstanceAddr, unsigned int

updatetype);

Valid for: ADQ112, ADQ114, ADQ412, ADQ1600,

SDR14

Sets the current mode, whether the IP is allowed

to perform parameter updates (background

calibration) or not and what parameter update

mode to use.

0 = No updates allowed

1 = Normal mode(default)

2 = Time-domain mode

Set by input argument updatetype.

Note: For more information on the different modes

and when to use them, please contact SP Devices.

SetInterleavingIPFrequencyCalibrationMo
de

unsigned int

ADQxxx_SetInterleavingIPFrequencyCalibratio

nMode(void* adq_cu_ptr, int adqxxx_num,

unsigned char IPInstanceAddr, unsigned int

freqcalmode);

Valid for: ADQ112, ADQ114, ADQ412, ADQ1600,

SDR14

Sets the current mode, whether the IP should use

the frequency calibration mode or not.

Set by input argument freqcalmode

GetInterleavingIPFrequencyCalibrationMo
de

unsigned int

ADQxxx_GetInterleavingIPFrequencyCalibratio

nMode(void* adq_cu_ptr, int adqxxx_num,

unsigned char IPInstanceAddr, unsigned int*

freqcalmode);

Valid for: ADQ112, ADQ114, ADQ412, ADQ1600,

SDR14

Gets the current mode, whether the IP are

usingthe frequency calibration mode or not.

Result is returned in argument freqcalmode

SendIPCommand

unsigned int

ADQxxx_SendIPCommand(unsigned char

IPInstanceAddr, unsigned char cmd, unsigned

int arg1, unsigned int arg2, unsigned int*

answer);

Valid for: ADQ112, ADQ114, ADQ412, ADQ1600,

SDR14

SendIPCommand gives the user direct access to the

ADX command interface.

IPInstanceAddr selects between different IP

instances for products with multiple ADX cores

(e.g. ADQ412, SDR14), and is zero-indexed. This

parameter should be set to 0 for digitizers with

a single ADX core.

The command and arguments are passed in the

cmd/arg1/arg2 parameters, while the response is

returned via the answer pointer.

Further information regarding commands that may

be used, is given in the ADX IP user guide.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 61(80)

Author Printed

Stefan Ahlqvist

6.4.4 Precise-Period Trigger

Precise Period Trigger function Description

SetPPTActive

unsigned int ADQxxx_SetPPTActive(

void* adq_cu_ptr, int adqxxx_num,

unsigned int active)

Valid for: ADQ108, ADQ208

Activates or deactivates precise period trigger,

synchronizing the external trigger to a precise

period. Refer to the PPT user guide and example

for more detailed information on how to use the

precise period trigger.

active = 1 =>PPT active

active = 0 =>PPT deactivated

Returns 1 for successful operation and 0 for

failure.

InitPPT

unsigned int ADQxxx_InitPPT(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ108, ADQ208

Initializes the precise period trigger.

Returns 1 for successful operation and 0 for

failure.

SetPPTInitOffset

unsigned int ADQxxx_SetPPTInitOffset(

void* adq_cu_ptr, int adqxxx_num,

unsigned int init_offset)

Valid for: ADQ108, ADQ208

Sets the precise period trigger init offset.

The init offset should be set to a number of

samples from 32 to (2^27)-1. The offset is applied

to the period on the first trig after

initialization of the precise period trigger.

Returns 1 for successful operation and 0 for

failure.

SetPPTPeriod

unsigned int ADQxxx_SetPPTPeriod(

void* adq_cu_ptr, int adqxxx_num,

unsigned intperiod)

Valid for: ADQ108, ADQ208

Sets the precise period trigger period.

The period should be set to a number of samples

from 32 to (2^27)-1.

Returns 1 for successful operation and 0 for

failure.

SetPPTBurstMode

unsigned int ADQxxx_SetPPTBurstMode(

void* adq_cu_ptr, int adqxxx_num,

unsigned int active)

Valid for: ADQ108, ADQ208

Activates or deactivates the precise period

trigger burst mode.

In burst mode, the device will continue to trigger

at each PPT period after the first external

trigger event without the need for more external

trigger events.

active = 1 =>Burst mode active

active = 0 =>Burst mode deactivated

Returns 1 for successful operation and 0 for

failure.

GetPPTStatus

unsigned int ADQxxx_GetPPTStatus(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ108, ADQ208

Returns the status register for the PPT function.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 62(80)

Author Printed

Stefan Ahlqvist

6.4.5 ADQ DSP and DSU Specific Functions

ADQ DSP function Description

InitTransfer

int ADQxxx_InitTransfer(void* adq_cu_ptr,

int adqxxx_num,)

Valid for: ADQDSP, DSU

Initiate and flush the data path. Must be issued

before any transfer of data to or from ADQDSP.

GetDSPData

int ADQxxx_GetDSPData(void* adq_cu_ptr,

int adqxxx_num)

Valid for: ADQDSP, DSU

Start transfer of data from the internal memory

buffers of the ADQDSP device to the ADQDSP-object

in the host computer.

GetDSPDataNowait

int ADQxxx_GetDSPDataNowait(void*

adq_cu_ptr, int adqxxx_num)

Valid for: ADQDSP, DSU

Start transfer of data from the internal memory

buffers of the ADQDSP device to the ADQDSP-object

in the host computer. Use WaitForPCIeDMAFinish

before reading data to ensure that data transfer

is complete.

SetSendLength

int ADQxxx_SetSendLength(void*

adq_cu_ptr, int adqxxx_num, unsigned int

length)

Valid for: ADQDSP, DSU

Set the size of data vectors that shall be

transferred from ADQDSP in 32 bits words. This

length is used by GetData and GatDataNowait.

GetSendLength

unsigned int ADQxxx_GetSendLength(void*

adq_cu_ptr, int adqxxx_num)

Valid for: ADQDSP, DSU

Returns the value set by SetSendLength.

WaitForPCIeDMAFinish

int ADQxxx_WaitForPCIeDMAFinish(void*

adq_cu_ptr, int adqxxx_num, unsigned int

length)

Valid for: ADQDSP, DSU

Wait for transaction from ADQDSP to complete. See

also GetDSPDataNowait.

WriteToDataEP

int ADQxxx_WriteToDataEP(void*

adq_cu_ptr, int adqxxx_num, unsigned int

*pData, unsigned int length)

Valid for: ADQDSP, SDR14, DSU

Write data to ADQDSP. Length is number of 32 bit

words in pData. Note: This length is not affected

by SetSendLength.

TrigOutEn

int ADQxxx_TrigOutEn(void* adq_cu_ptr,

int adqxxx_num, unsigned int en)

Valid for: ADQDSP, DSU

Enable or disable TrigIn to TrigOut propagation.

En = 0: Disabled

En = 1: Enabled.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 63(80)

Author Printed

Stefan Ahlqvist

GetPhysicalAddress

unsigned long

ADQxxx_GetPhysicalAddress(void*

adq_cu_ptr, int adqxxx_num)

Valid for: ADQDSP, DSU

Get the physical DMA address of the unit.

6.4.6 Arbitrary Waveform Generator (AWG)

AWG function Description

AWGSegmentMalloc

unsigned int ADQxxx_AWGSegmentMalloc(

 void* adq_cu_ptr,

 int adqxxx_num,

 unsigned int dacId,

 unsigned int segId,

 unsigned int length,

 unsigned charreallocate)

Valid for: SDR14

Allocate memory space for an AWG segment. segId

selects the segment to allocate for, and length

determines the number of samples to be allocated

to the segment in memory. The length parameter

must be a multiple of 16.

The function uses the end address of the

preceeding segment internally during allocation,

so an allocation loop using this function should

always go from segment 1 and upwards sequentially,

never the other way around.

The reallocate parameter can be used to reallocate

the memory mapping of all the segments following

the one that is being modified. This is useful if

only a few segments are to be reallocated and the

user desires the update of the remaining segments

to be done automatically. If, however, every

segment in the entire AWG is to be reallocated

within a loop by the user, the reallocate

parameter should be set to 0 in order to avoid

wasting computations.

dacId: 1 or 2 (select AWG/DAC)

AWGWriteSegment

unsigned int ADQxxx_AWGWriteSegment(

 void* adq_cu_ptr,

 int adqxxx_num,

 unsigned int dacId,

 unsigned int segId,

 unsigned int enable,

 unsigned int NofLaps,

 unsigned int length,

 int *data)

Valid for: SDR14

Writes a segment to the AWG memory allocated by

first using AWGSegmentMalloc. The data length must

be a multiple of 16 samples.

If *data is a null pointer, all the other settings

will be set without writing any new data to the

DRAM.

The input data should be two’s complement

integers.

The enable parameter is deprecated and will have

no effect on the AWG. Use AWGEnableSegments for

setting the number of enabled segments.

NofLaps sets the number of laps which the segment

should be looped before the AWG continues to the

next segment.

Bit 31 in the NofLaps integer is used to enable

infinite-laps mode where the segment loops

infinitely (until the AWG is disarmed, or a

special trigger mode forces a segment switch, see

AWGTrigMode). This means that the maximum number

of laps that may be used without infinite looping

is 2^31-1.

dacId: 1 or 2 (select AWG/DAC)

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 64(80)

Author Printed

Stefan Ahlqvist

AWGArm

unsigned int ADQxxx_AWGArm(

 void* adq_cu_ptr,

 int adqxxx_num,

 unsigned int dacId)

Valid for: SDR14

Arms the AWG. This preloads the first set of data

from the DRAM so that the AWG is ready to output

data as soon as it is triggered.

dacId: 1 or 2 (select AWG/DAC)

AWGDisarm

unsigned int ADQxxx_AWGDisarm(

 void* adq_cu_ptr,

 int adqxxx_num,

 unsigned int dacId)

Valid for: SDR14

Disarms the AWG, i.e turns it off. A trigger event

will not cause the AWG to output data once it is

disarmed.

dacId: 1 or 2 (select AWG/DAC)

AWGEnableSegments

unsigned int ADQxxx_AWGEnableSegments(

 void* adq_cu_ptr,

 int adqxxx_num,

 unsigned int dacId,

 unsigned int enableSeg)

Valid for: SDR14

Enables the specified amount of segments.

During readout, the AWG will output all segments

up to and including this number, before

restarting.

dacId: 1 or 2 (select AWG/DAC)

AWGAutoRearm

unsigned int ADQxxx_AWGAutoRearm(

 void* adq_cu_ptr,

 int adqxxx_num,

 unsigned int dacId,

 unsigned int enable)

Valid for: SDR14

Turns auto-rearm mode on (enable = 1) and off

(enable = 0) for the AWG. This mode will rearm the

AWG immediately upon a finished readout cycle, to

make it ready for a new trigger event.

dacId: 1 or 2 (select AWG/DAC)

AWGContinuous

unsigned int ADQxxx_AWGContinuous(

 void* adq_cu_ptr,

 int adqxxx_num,

 unsigned int dacId,

 unsigned int enable)

Valid for: SDR14

Turns continuous mode on and off for the AWG. If

this mode is turned on (enable = 1), the AWG will

start outputting data as soon as it is armed.

dacId: 1 or 2 (select AWG/DAC)

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 65(80)

Author Printed

Stefan Ahlqvist

AWGTrigMode

unsigned int ADQxxx_AWGTrigMode(

 void* adq_cu_ptr,

 int adqxxx_num,

 unsigned int dacId,

 unsigned int trigmode)

Valid for: SDR14

This function allows special triggering modes of

the AWG to be enabled.

dacId: 1 or 2 (select AWG/DAC)

The trigmode variable selects the mode to be used,

according to the following list:

trigmode = 0

Normal single-shot triggering

trigmode = 1

Requires trigger event before starting each

segment lap.

trigmode = 2

Seamless segment switching mode. This mode should

be used in conjunction with infinite-laps

programmed segments (see AWGWriteSegment

description).

Upon being triggered, the AWG will wait until the

end of the current segment lap before seamlessly

switching to the next segment. This allows the

user to loop segments indefinitely, with the

trigger acting as break for the loop, and without

any junk data being output when the segment switch

occurs.

NOTE: If seamless mode is enabled during the very

first trigger that starts the AWG, the AWG will

immediately seamlessly skip to segment 2. For this

reason, always trigger the AWG without seamless

mode initially, and then enable it for subsequent

triggers.

AWGSetTriggerEnable

unsigned int ADQxxx_AWGSetTriggerEnable(

 void* adq_cu_ptr,

 int adqxxx_num,

 unsigned int dacId,

 unsigned int bitflags)

Valid for: SDR14

This function allows selection of which trigger

signals may be used to trigger the AWG.

dacId: 1 or 2 (select AWG/DAC)

The bitflags variable should be considered a bit

field where each bit enables a trigger if

asserted, according to:

bit 0: Host trigger/software trigger from

 the data acquisition logic.

bit 1: External trigger

bit 2: PXIe port1 trigger

bit 3: Internal trigger

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 66(80)

Author Printed

Stefan Ahlqvist

AWGSetupTrigout

unsigned int ADQxxx_AWGSetupTrigout(

 void* adq_cu_ptr,

 int adqxxx_num,

 unsigned int dacId,

 unsigned int trigoutmode,

 unsigned int pulselength,

 unsigned int enableflags,

 unsigned int autorearm)

Valid for: SDR14

The AWG may be used to output a trigger signal (to

the PXIe backplane, trigger output connector or

similar.

dacId: 1 or 2 (select AWG/DAC)

trigoutmode: 0 – off

 1 – pulse at the start of each

 segment

 2 – pulse at the end of each segment

pulselength: Sets the trigout pulse length, in

 number of 200MHz clock cycle periods.

The enableflags variable is a bitfield, where each

bit enables output to the following:

bit 0: Trigout connector (not implemented

 yet)

bit 1: PXIe port1 trigger output

autorearm: 0 - autorearm off (requires manual

 rearm after every triggered trigout

 pulse)

 1 – autorearm on

AWGTrigoutArm

unsigned int ADQxxx_AWGTrigoutArm(

 void* adq_cu_ptr,

 int adqxxx_num,

 unsigned int dacId)

Valid for: SDR14

Arms the trigger output of the specified AWG. If

the AWG is to be rearmed after having triggered,

an AWGTrigoutDisarm command must first be issued.

dacId: 1 or 2 (select AWG/DAC)

AWGTrigoutDisarm

unsigned int ADQxxx_AWGTrigoutDisarm(

 void* adq_cu_ptr,

 int adqxxx_num,

 unsigned int dacId)

Valid for: SDR14

Disarms the trigger output of the specified AWG.

dacId: 1 or 2 (select AWG/DAC)

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 67(80)

Author Printed

Stefan Ahlqvist

6.4.7 MicroTCA-specific functions

MicroTCA function Description

SetEthernetPllFreq

unsigned int ADQxxx_SetEthernetPllFreq(

 void* adq_cu_ptr,

 int adqxxx_num,

 unsigned chareth10freq,

 unsigned chareth1freq)

Valid for:ADQ108, ADQ208, ADQ412, ADQ1600

(Only –MTCA products)

Provides a simple way of setting the 10G and 1G

Ethernet GTX clocks to predefined values.

Currently allowed presets are:

ETH10_FREQ_156_25MHZ (156.25 MHz)

ETH10_FREQ_125MHZ (125 MHz)

ETH1_FREQ_156_25_MHZ (156.25 MHz)

ETH1_FREQ_125_MHZ (125 MHz)

SetPointToPointPllFreq

unsigned int ADQxxx_PointToPointPllFreq(

 void* adq_cu_ptr,

 int adqxxx_num,

 unsigned chareth10freq,

 unsigned chareth1freq)

Valid for:ADQ108, ADQ208, ADQ412, ADQ1600

(Only –MTCA products)

Provides a simple way of setting the point-to-

point interface GTX clock to predefined values.

Currently allowed presets are:

PP_FREQ_330MHZ (330 MHz)

PP_FREQ_250MHZ (250 MHz)

PP_FREQ_156_25MHZ (156.25 MHz)

PP_FREQ_125MHZ (125 MHz)

SetEthernetPll

unsigned int ADQxxx_SetEthernetPll(

 void* adq_cu_ptr,

 int adqxxx_num,

 unsigned short refdiv,

 unsigned char useref2,

 unsigned char a,

 unsigned short b,

 unsigned char p,

 unsigned char vcooutdiv,

 unsigned char eth10_outdiv,

 unsigned char eth1_outdiv)

Valid for:ADQ108, ADQ208, ADQ412, ADQ1600

(Only –MTCA products)

Provides an advanced way of setting the 10G and 1G

Ethernet GTX clocks. See AD9517-1 PLL datasheet

for more info on parameters and allowed values.

refdiv: Reference divider, 0 – 16383

useref2: Reference selector, 0 = 10MHz TCXO,

 1 = output from clockref mux

a: VCO feedback parameter A, 0 - 31

b: VCO feedback parameter B, 0 - 4095

p: VCO feedback parameter P, 2,4,8,16 or 32

vcooutdiv: VCO divider: 1-6

eth10_outdiv: 10G clock output divider 0-32

eth1_outdiv: 1G clock output divider 0-32

SetPointToPointPll

unsigned int ADQxxx_SetPointToPointPll(

 void* adq_cu_ptr,

 int adqxxx_num,

 unsigned short refdiv,

 unsigned char useref2,

 unsigned char a,

 unsigned short b,

 unsigned char p,

 unsigned char vcooutdiv,

 unsigned char pp_outdiv,

 unsigned char ppsync_outdiv)

Valid for:ADQ108, ADQ208, ADQ412, ADQ1600

(Only –MTCA products)

Provides an advanced way of setting the point-to-

point interface clock. See AD9517-1 PLL datasheet

for more info on parameters and allowed values.

refdiv: Reference divider, 0 – 16383

useref2: Reference selector, 0 = 10MHz TCXO,

 1 = output from clockref mux

a: VCO feedback parameter A, 0 - 31

b: VCO feedback parameter B, 0 - 4095

p: VCO feedback parameter P, 2,4,8,16 or 32

vcooutdiv: VCO divider: 1-6

pp_outdiv: Point-to-point output divider 0-32

ppsync_outdiv: Point-to-point synched clock for 1G

Ethernet output divider 0-32

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 68(80)

Author Printed

Stefan Ahlqvist

SetDirectionMLVDS

unsigned int ADQxxx_SetDirectionMLVDS(

 void* adq_cu_ptr,

 int adqxxx_num,

 unsigned char direction)

Valid for: ADQ108, ADQ208, ADQ412,

ADQ1600 (Only –MTCA products)

Sets the direction of the eight LVDS pairs

connected to the backplane.

The direction parameter is an 8-bit pattern:

{7,…,0} = {T20,R20,…,T17,R17}

where 0 = input, 1 = output. The setting defaults

to all inputs.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 69(80)

Author Printed

Stefan Ahlqvist

6.4.9 Peer-to-Peer function

Peer-to-Per function Description

SetP2pSize

unsigned int ADQxxx_SetP2pSize(void*

adq_cu_ptr, int ADQxxx_num, unsigned int

bytes)

Valid for: Device with P2P support

This function sets the size of the package in

bytes to be sent for each p2p transaction.

GetP2pSize

unsigned int ADQxxx_GetP2pSize(void*

adq_cu_ptr, int ADQxxx_num)

Valid for: Device with P2P support

Returns the value set by SetP2pSize.

SendDataDev2Dev

unsigned int ADQxxx_SendDataDev2Dev(void*

adq_cu_ptr, int ADQxxx_num, unsigned long

PhysicalAddress)

Valid for: Device with P2P support

Configure device for transaction of one package.

It can be called before data is available to

prepare device.

GetP2PStatus

unsigned int ADQxxx_GetP2PStatus(void*

adq_cu_ptr, int ADQxxx_num, unsigned int*

pending, unsigned int channel)

Valid for: Device with P2P support

Gets the number of pending DMA transfer for the

DMA channel specified by channel. The number of

pending transfers is returned at the pointer

pending.

6.4.10 PXIe backplane trigger block

PXIe backplane trigger function Description

EnablePXIeTriggers

unsigned int ADQxxx_EnablePXIeTriggers(

 void* adq_cu_ptr,

 int adqxxx_num,

 unsigned int port,

 unsigned int bitflags)

Valid for:SDR14

All the various PXIe trigger inputs are summed

together into a single PXIe trigger signal. This

function allows specific inclusion/exclusion of

these inputs.

The PXIe trigger block has two ports which can be

configured independently, and which are connected

to separate parts of the digitizer logic,

according to:

port 0: Data acquisition logic

port 1: AWG (on SDR14)

The bitflags variable should be considered a bit

field where each bit enables a specific trigger

input for the selected port.

bit 0: DSTARA

bit 1: DSTARB

bit 2: PXI_TRIG[0]

bit 3: PXI_TRIG[1]

(note: PXI_TRIG[2 to 7] are not routed on the

digitizer PCB and cannot be used.)

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 70(80)

Author Printed

Stefan Ahlqvist

EnablePXIeTrigout

unsigned int ADQxxx_EnablePXIeTrigout(

 void* adq_cu_ptr,

 int adqxxx_num,

 unsigned int port,

 unsigned int bitflags)

Valid for: SDR14

The trigger output of each port may be connected

to any/all the available PXIe trigger outputs via

this function.

port 0: Data acquisition logic

port 1: AWG (on SDR14)

The bitflags variable should be considered a bit

field where each bit enables output of the port

trigout signal to a specific PXIe trigger output.

bit 0: DSTARC

bit 1: PXI_TRIG[0]

bit 2: PXI_TRIG[1]

PXIeSoftwareTrigger

unsigned int ADQxxx_PXIeSoftwareTrigger(

 void* adq_cu_ptr,

 int adqxxx_num)

Valid for: SDR14

This function will send out a trigger signal on

all of the enabled trigger outputs.

SetPXIeTrigDirection

unsigned int ADQxxx_SetPXIeTrigDirection(

 void* adq_cu_ptr,

 int adqxxx_num,

 unsigned int trig0output,

 unsigned int trig1output)

Valid for: SDR14

This function sets the direction of the two

PXI_TRIG I/O pins.

0: Input (default)

1: Output

Make sure that no other drivers are connected to

the PXI_TRIG bus before setting the trigger pins

to outputs, or you may risk damaging the

digitizer.

WriteSTARBDelay

unsigned int ADQxxx_WriteSTARBDelay(

 void* adq_cu_ptr,

 int adqxxx_num,

 unsigned int starbdelay)

Valid for: SDR14

This function writes a delay value to be used on

the DSTARB trigger input, which is stored in the

onboard EEPROM and loaded upon each restart of the

digitizer.

The allowed range of values are 0 to 31, where

each unit corresponds to a 78 ps delay.

6.5 Deprecated functions

Functions documented here are left for backwards compatibility with older applications. Not
recommended to use in new or updated applications.

Deprecated function Description

SetBufferSize

int ADQxxx_SetBufferSize(

void* adq_cu_ptr, int adqxxx_num,

unsigned int samples)

Valid for: ADQ108, ADQ112, ADQ114,

ADQ1600, ADQ208, ADQ212, ADQ214, ADQ412,

SDR14

Deprecated

Setups the memory buffers for single record

acquisition (single trigger) in the ADQ device.

Note: per channel if applicable (ADQ214).

Returns 1 for successful operation and 0 for

failure. Failures include trying to allocate more

memory than is available.

(Recommended: Use MultiRecordSetup instead)

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 71(80)

Author Printed

Stefan Ahlqvist

SetBufferSizePages

Deprecated

Do not use

SetBufferSizeWords

Deprecated

Do not use

GetBufferSizePages

Deprecated

Do not use

GetBufferSize

Deprecated

Do not use

SetLvlTrigResetLevel

Deprecated

(Recommended: Use SetTrigLevelResetValue instead)

USBTrig

Deprecated

(Recommended: Use SWTrig instead)

SetLvlTrigFlank

Deprecated

(Recommended: Use SetLvlTrigEdge)

MultiRecordGetRecord

Deprecated

(Recommended: Use CollectRecord instead)

SetSampleWidth

int ADQxxx_SetSampleWidth(

void* adq_cu_ptr, int adqxxx_num,

unsigned int NofBits)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214

Deprecated

Sets the sample size of inter-FPGA communication

in number of bits.

NofBits = 8, 12, 14, 16** or 32**(8, 12 or 14

depending of which ADQ-device you are interfacing)

This value must match sample width of inter-FPGA

sample data and should normally not be changed.

Returns 1 for successful operation and 0 for

failure.

**Sample width must be set to 16 bits when streaming is active or

32 bits when decimation is active.

(Recommended: Use SetDataFormat instead)

SetNofBits

int ADQxxx_SetNofBits(

void* adq_cu_ptr, int adqxxx_num,

unsigned int NofBits)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214

Deprecated

Sets the word size of inter-FPGA communication in

number of bits.

NofBits = 24, 28 or 32**(24 or 28 depending of

which ADQ-device you are interfacing)

This value must match word width of inter-FPGA

sample data and should normally not be changed.

Returns 1 for successful operation and 0 for

failure.

**Sample width must be set to 32 bits when decimation or when

streaming is active.

(Recommended: Use SetDataFormat instead)

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 72(80)

Author Printed

Stefan Ahlqvist

SetAlgoStatus

unsigned int ADQxxx_SetAlgoStatus(void*

adq_cu_ptr, int adqxxx_num, int status);

Valid for: ADQ112, ADQ114

Deprecated

Set interleaving algorithm in statusstatus.

0 => By-pass interleaving algorithm.

1 => (Default) use interleaving algorithm.

(Recommended: Use SetInterleavingIPBypassMode

instead)

SetAlgoNyquistBand

unsigned

intADQxxx_SetAlgoNyquistBand(void*

adq_cu_ptr, int adqxxx_num, unsigned int

band);

Valid for: ADQ112, ADQ114

Deprecated

Set Nyquist band for interleaving algorithm to

band.

0 => (Default) From 0 Hz to sampling_frequency/2.

1 => From sampling_frequency/2 to

sampling_frequency.

(Recommended: No usage necessary)

GetLvlTrigFlank

int ADQxxx_GetLvlTrigFlank(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ412, ADQ212, ADQ108,

ADQ112, ADQ114, ADQ214

Deprecated

Returns the edge for which the level trigger shall

trig.

Return value = 1 => Rising edge

Return value = 0 => Falling edge

(Recommended: Use GetLvlTrigEdge instead)

GetMaxBufferSize

unsigned int ADQxxx_GetMaxBufferSize(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ108, ADQ112, ADQ114,

ADQ1600, ADQ208, ADQ212, ADQ214, ADQ412,

SDR14

Deprecated

Returns the maximum number of samples in the total

acquisition buffer in the ADQ device.

Note: per channel if applicable (ADQ214).This

figure may change when altering the acquisition

settings.

(Recommended: Do not use)

GetMaxBufferSizePages

unsigned int

ADQxxx_GetMaxBufferSizePages(

void* adq_cu_ptr, int adqxxx_num)

Valid for: ADQ108, ADQ112, ADQ114,

ADQ1600, ADQ208, ADQ212, ADQ214, ADQ412,

SDR14

Deprecated

Returns the maximum number of internal acquisition

pages of the device.

Note: per channel if applicable (ADQ214).This

figure may change when altering the acquisition

settings.

(Recommended: Do not use)

SendLongProcessorCommand

unsigned

intADQxxx_SendLongProcessorCommand(

void* adq_cu_ptr, int adqxxx_num,

int command, int addr, int mask, int

data)

Valid for: ADQ212, ADQ112, ADQ114, ADQ214

Deprecated

Sends commands to the processor in the comm. FPGA.

The available commands are defined in the

processor code and are listed in

ADQAPI_definitions.h.

Returns the answer from the processor.

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 73(80)

Author Printed

Stefan Ahlqvist

GetTrigged

int ADQxxx_GetTrigged(

void* adq_cu_ptr, int adqxxx_num)

C++ name: GetAcquired()

Valid for: ADQ108, ADQ112, ADQ114,

ADQ1600, ADQ208, ADQ212, ADQ214, ADQ412,

SDR14

Deprecated

Returns 1 if the ADQ device has been trigged and

data has been acquiredfor one or more its records.

0 else.

(Recommended: Use GetAcquired instead)

GetTriggedAll

int ADQxxx_GetTriggedAll(

void* adq_cu_ptr, int adqxxx_num)

C++ name: GetAcquiredAll()

Valid for: ADQ108, ADQ112, ADQ114,

ADQ1600, ADQ208, ADQ212, ADQ214, ADQ412,

SDR14

Deprecated

Returns 1 if the ADQ device has been trigged and

data has been acquired for all its records. 0

else.

(Recommended: Use GetAcquiredAll instead)

AWGmalloc

unsigned int ADQxxx_AWGmalloc(

 unsigned int dacId,

 unsigned int LengthSeg1,

 unsigned int LengthSeg2,

 unsigned int LengthSeg3,

 unsigned int LengthSeg4)

Deprecated

Allocate memory space for AWG vectors. LengthSegN

defines how many samples to allocate memory for in

that specific segment.

(Recommended: Use AWGSegmentMalloc instead)

GetDataMultiRecordSetup

Deprecated

Do not use

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 74(80)

Author Printed

Stefan Ahlqvist

6.6 Intentionally undocumented functions

Functions documented here are included in some of the APIs, but are only intended for internal API and
debug purposes, internal to SP Devices. Do not use these in applications, as no documentation will be
made available and functions may change behavior at any time.

Undocumented function Description

ParseEEPROMBlock

Internal only

External documentation not available

SetDelayLineValues

Internal only

External documentation not available

SetDelayLineValuesDirect

Internal only

External documentation not available

SetWordsPerPage

Internal only

External documentation not available

SetPreTrigWords

Internal only

External documentation not available

SetWordsAfterTrig

Internal only

External documentation not available

SetTrigMask1

Internal only

External documentation not available

SetTrigLevel1

Internal only

External documentation not available

SetTrigPreLevel1

Internal only

External documentation not available

SetTrigCompareMask1

Internal only

External documentation not available

SetTrigMask2

Internal only

External documentation not available

SetTrigLevel2

Internal only

External documentation not available

SetTrigPreLevel2

Internal only

External documentation not available

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 75(80)

Author Printed

Stefan Ahlqvist

SetTrigCompareMask2

Internal only

External documentation not available

GetPageCount

Internal only

External documentation not available

ParseSampleData

Internal only

External documentation not available

RegisterNameLookup

Internal only

External documentation not available

SPISend

Internal only

External documentation not available

GetComFlashEnableBit

Internal only

External documentation not available

FlashUpdate

Internal only

External documentation not available

CollectDataNextPageWithPrefetch

Internal only

External documentation not available

SendProcessorCommand

Internal only

External documentation not available

WriteI2C

Internal only

External documentation not available

ReadI2C

Internal only

External documentation not available

WriteReadI2C

Internal only

External documentation not available

ADQControlUnit_ReadPCIConfigurationS
paceHeader

Internal only

External documentation not available

ADQControlUnit_WritePCIConfiguration
SpaceHeader

Internal only

External documentation not available

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 76(80)

Author Printed

Stefan Ahlqvist

WaveformAveragingStartReadout

Internal only

External documentation not available

PllReg

Internal only

External documentation not available

OffsetDACSpiWrite

Internal only

External documentation not available

DACSpiWrite

Internal only

External documentation not available

DACSpiRead

Internal only

External documentation not available

GetFPGAPart

Internal only

External documentation not available

GetFPGATempGrade

Internal only

External documentation not available

GetFPGASpeedGrade

Internal only

External documentation not available

IsBootLoader

Internal only

External documentation not available

BootADQFromFlash

Internal only

External documentation not available

FX2ReadRequest

Internal only

External documentation not available

FX2WriteRequest

Internal only

External documentation not available

ProcessorFlashControlData

Internal only

External documentation not available

ProcessorFlashControl

Internal only

External documentation not available

GetNofFPGAs

Internal only

External documentation not available

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 77(80)

Author Printed

Stefan Ahlqvist

GetTrigType

Internal only

External documentation not available

StorePCIeConfig

Internal only

External documentation not available

ReloadPCIeConfig

Internal only

External documentation not available

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 78(80)

Author Printed

Stefan Ahlqvist

7 MATLAB INTERFACE

Most of the functions of the API will function in the same way via interface_ADQ.m as they do in the C/C++
style API. However, there are some exceptions:

 Functions that return pointers cannot be called using interface_ADQ. An example of this is
ADQxxx_GetPtrStream.

 Functions that take one or several pointer as input and store data on those addresses instead
return the data directly when used via interface_ADQ. An example is ADQxxx_GetData

 ADQControlUnit-functions are not supported.

7.1 Using interface_ADQ

To get a list of all ADQs connected to the system, run the mex-file called mex_ADQ. All detected ADQs are
then listed together with a board number that is unique for each device.

Functions of the API are then called using this structure:

[data_A, data_B, status] = interface_ADQ(functionname, [arg1, … , argN], boardid)

Where the input arguments are:

 functionname: a string containing the name of the function (in lower case only).

 [arg1, … , argN]: the input arguments given in the same order as in the C/C++ style API. Any
pointers given in standard API functions are simply skipped.

 boardid: either the number of the ADQ received by mex_ADQ, or a string containing the serial
number of the ADQ (e.g. ’SPD-01829’) can be used to specify which device to use.

The data is returned a bit differently compared to the C/C++ style API:

 C/C++ style API functions that return only a success-flag return this flag in both data_A
andstatus when used via interface_ADQ.

 C/C++ style API functions that return a data value, return that value in data_A , while status is left
empty.

 C/C++ style API functions that fill an address specified by an input pointer with data instead
return that data directly in data_A when using interface_ADQ. The value returned by the original
function (typically a success flag), is returned in status. As an example, a call to GetData via
interface_ADQ will store all samples from all channels in data_A, and return the ‘real’ return value
in status.

 data_B is used for a few data collection functions for ADQ214 and ADQ212. For these, data from
channel A is returned in data_A and data from channel B is returned in data_B.

As an example, the following command in C:

success = ADQ214_WriteRegister(cu_ptr, adq214_num, addr, mask, data)

Becomes:

success = interface_ADQ(‘writeregister’, [addr, mask, data], boardid)

If boardid isn’t specified, it will be assumed to be ‘1’. The vector with input arguments may also be
omitted for functions that doesn’t use input values, but if a boardid is specified it must be an empty
vector. For example:

success = interface_ADQ(‘isalive’, [], 1)

isequivalent to:

success = interface_ADQ(‘isalive’)

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 79(80)

Author Printed

Stefan Ahlqvist

7.2 Functions Differing from C/C++ style API

Interface_ADQ call Description

collectrecord

interface_ADQ(‘collectrecord’,

record_num, boardid)

Multirecord mode only.

Returns the data in the record specified by

record_num. For ADQ214 and ADQ212 the data for

channel A and B is returned in data_A and data_B,

respectively. For all other products the data from

all channels is returned as a struct in data_A.

gettemperature

interface_ADQ(‘gettemperature’, addr,

boardid)

Returns the temperature in Celsius of the sensor

specified by addr. The return value of the

original API function is scaled by a factor of

256, but interface_ADQ removes this scaling.

7.3 Functions Specific for interface_ADQ.m

Interface_ADQ call Description

getdatastream

interface_ADQ(‘getdatastream’,

NofBytesToCopy, boardid)

Calls GetPtrStream() of the API, and copies

NofBytesToCopy bytes from this address.

Returns the raw data bytes as a vector in data_A

Signal Processing Devices Sweden AB
Teknikringen 6

SE-583 30 Linköping, Sweden

Document Number Revision Date Security class

08-0214 11671 2013-12-18 Open 80(80)

Author Printed

Stefan Ahlqvist

8 ERROR CODES

These are the available error codes as reported by GetLastError function:

#define ERROR_CODE_NO_ERROR_OCCURRED 0x00000000

#define ERROR_CODE_ADQAPI_NOT_BUILT_FOR_CORRECT_OS 0x00000001

#define ERROR_CODE_FUNCTION_NOT_SUPPORTED_BY_DEVICE 0x00001000

#define ERROR_CODE_CHANNEL_NOT_AVAILABLE_ON_DEVICE 0x00001001

#define ERROR_CODE_FUNCTION_NOT_SUPPORTED_BY_DEVICE_REVISION 0x00001002

#define ERROR_CODE_GETDATA_BUFFERPOINTERS_NULL 0x00002001

#define ERROR_CODE_GETDATA_ENDRECORDNUMBER_TOO_HIGH 0x00002002

#define ERROR_CODE_GETDATA_TARGET_BUFFER_SIZE_SPEC_TOO_SMALL 0x00002003

#define ERROR_CODE_GETDATA_SAMPLE_SETTING_GT_RECORDSIZE 0x00002004

#define ERROR_CODE_GETDATA_TRANSFER_SETTINGS_BAD 0x00002005

#define ERROR_CODE_DELAY_COMPENSATION_NOT_IN_RANGE 0x00002100

#define ERROR_CODE_OPEN_READ_VDD_EEPROM_FAILD 0x00003001

#define ERROR_CODE_OPEN_SET_VDD_FAILD 0x00003002

#define ERROR_CODE_OPEN_SET_PARAM_1_FAILD 0x00003003

#define ERROR_CODE_OPEN_SET_PARAM_2_FAILD 0x00003004

#define ERROR_CODE_OPEN_SET_PARAM_3_FAILD 0x00003005

#define ERROR_CODE_OPEN_SET_DEF_CLOCK_SOURCE 0x00003006

#define ERROR_CODE_OPEN_SET_PLL_DEF 0x00003007

#define ERROR_CODE_OPEN_RESET_ADC 0x00003008

#define ERROR_CODE_OPEN_CALIBRATE_ADC 0x00003009

#define ERROR_CODE_OPEN_INIT_ADC 0x0000300A

#define ERROR_CODE_OPEN_SETPLL_1 0x0000300B

#define ERROR_CODE_OPEN_SETPLL_2 0x0000300C

#define ERROR_CODE_OPEN_SET_DATA_FORMAT 0x0000300D

#define ERROR_CODE_OPEN_DRAM_INIT_FAILED 0x0000300E

#define ERROR_CODE_OPEN_CALIBRATE_PLL 0x0000300F

#define ERROR_CODE_OPEN_DESKEW_TRIGGERING_FAILED 0x00003010

#define ERROR_CODE_OPEN_WRONG_DAUGHTERBOARD 0x00003011

#define ERROR_CODE_SET_PLL_FAILED_BAD_SETTINGS 0x00003100

#define ERROR_CODE_SET_PLL_FAILED_STAGE_1 0x00003101

#define ERROR_CODE_REGISTER_NOT_AVAILABLE 0x00003400

#define ERROR_CODE_IP_NOT_IN_CORRECT_MODE 0x00004001

#define ERROR_CODE_IP_REPORTS_BAD_SIZE 0x00004002

#define ERROR_CODE_IP_GENERAL_ERROR 0x00004003

#define ERROR_CODE_IP_NO_ANSWER 0x00004004

#define ERROR_CODE_WAVEFORMAVERAGING_SETUP_BAD 0x00005001

#define ERROR_CODE_PACKETSTREAMING_SETUP_BAD 0x00006001

#define ERROR_CODE_STREAMING_OUT_OF_SYNC_WARNING 0x00006100

