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Josephson junction transmission lines as tunable artificial crystals
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We investigate one-dimensional Josephson junction arrays with generalized unit cells as a circuit approach
to engineer microwave band gaps. An array described by a lattice with a basis can be designed to have a gap
in the electromagnetic spectrum, in full analogy to electronic band gaps in diatomic or many-atomic crystals.
We derive the dependence of this gap on the array parameters in the linear regime and suggest experimentally
feasible designs to bring the gap below the single-junction plasma frequency. The gap can be tuned in a wide
frequency range by applying external flux, and it persists in the presence of small imperfections.
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I. INTRODUCTION

The design of Josephson junction circuits in an appropriate
electromagnetic environment1 is currently of great interest
in the context of circuit QED and qubit design.2–4 The
quantum mechanical nature of these electronic circuits is often
described by analogy, where individual circuit elements can
be thought of as “artificial atoms” whose intrinsic properties
can be designed by the quantum circuit engineer. A natural
extension of this analogy is to view periodic arrays of circuit
elements as fully designable, tunable artificial crystals3–5 or
engineered metamaterials.3–8 Metamaterials based on optical
plasma resonances in metallic nanostructures are presently of
great interest,9 but their microwave counterparts are perhaps
even more interesting when superconductors are used to
realize the metamaterial, due to the absence of dissipation
for frequencies below the superconducting energy gap.5–8

Both the classical and the quantum electrodynamics of these
periodic structures are extremely rich when Josephson tunnel
junctions are used to build the metamaterial. Periodic arrays
of Josephson junctions have specifically been the subject
of numerous studies as a model system for quantum phase
transitions (for a review, see Ref. 10). While much of the
early work in this field concerns two-dimensional Josephson
junction arrays (2d-JJAs), the quantum behavior of 1d-JJAs
has also been investigated,11–16 and 1d-JJAs have also been
described in the context of quantum metamaterials built
from integrated qubit chains4 and the transfer of quantum
information with on-chip transmission lines.17 Other studies
treat 1d-JJAs classically, where the nonlinear Josephson
inductance is used to amplify signals at the quantum limit.18,19

The large linear inductance of the 1d-JJA has recently been
used to realize a charge qubit immune to low-frequency charge
noise.20,21 The classical phase dynamics of regular 1d-JJAs was
also studied for the development of the 10-V Josephson voltage
standard, where the focus was on the nonlinear dynamics of
a driven array, in order to understand the boundary between
periodic and chaotic response.22,23

There exists, however, a gap in the literature concerning the
classical electrodymamics of 1d-JJAs, which we address in this
article. Here we examine the simple linear electrodynamics of
a 1d-JJA when the array is described by a lattice with a basis.
The presence of a basis in the one-dimensional lattice causes
the appearance of a gap in the electromagnetic spectrum of the

array, in analogy to a many-atomic crystal. Our interest is to
simulate experimentally realizable designs where such more
complex unit cells are used to control the dispersion relation
and band gap. Specifically, designs consisting of a basis
with two different junctions [or superconducting quantum
interference devices (SQUIDs)] and different capacitances to
ground are considered. By using SQUIDs in the unit cell, the
gap can be tuned in a wide range using an external magnetic
field. We derive the dispersion relation of an infinite array
with unit cells having two different junctions in the basis, as
depicted in Fig. 1.

This Josephson junction analog of the diatomic chain24

has more parameters than its atomic counterpart, allowing
for control in the design of the dispersion relation. As with
the diatomic chain, the dispersion relation has a band gap
as shown in Fig. 2, that is, a frequency region in which no
propagating modes appear and the real part of the impedance
vanishes. The gap appears at frequencies of the order of the
plasma frequencies of the individual junctions. We investigate
the parameter dependence of the band gap and possibilities
to lower it to the experimentally accessible frequency region,
appropriate for integration with qubit designs. Extending this
approach, one sees that an even wider parameter space can
be achieved with unit cells having more than two junctions or
SQUIDs, resulting in more branches in the linear dispersion
relation. While we focus on the case with two different
junctions per unit cell, we give in Appendix B a more general
treatment which allows arbitrary, nonidentical unit cells in the
linear regime. We use this general approach to show that the
gap persists in finite, short arrays with two-junction unit cells
in the presence of a small parameter spread (5% standard
deviation), and we present simulations for a transmission
experiment with realistic boundary conditions.

The linear approximation restricts the applicability of our
model to junctions where quantum tunneling of the phase can
be neglected, which is realized when the Josephson energy
dominates over the charging energy. Such junctions have a
comparatively large area and therefore have the advantage
that they can be fabricated with a low relative spread of
parameters. Junctions in the phase regime are approximately
described by their linear behavior if the current flowing in
the junctions is much less than the critical current. The array
can then be regarded as a complex transmission line with
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FIG. 1. (Color online) (a) A sketch of a coplanar transmission line
where the center conductor is a regular 1d-JJA with a basis containing
both a single junctions and a SQUID loops. (b) A lumped element
circuit model of a regular 1d-JJA, where each unit cell j consists of
a Josephson junction with its parallel capacitance and a capacitance
to ground. (c) A generalized model where each unit cell j consists of
two different junctions and capacitances to ground, suitable to study
the design in Fig. 1(a).

a nontrivial, gapped dispersion relation. A resonator made
from a finite-length transmission line with such an array could
find use in circuit cavity QED25,26 for strongly coupling to
the Josephson plasma modes. Nonlinear corrections, briefly
discussed in Appendix B, can be used to realize parametric
amplification18,19,27–30 and quantum noise squeezing.19,29,31

II. JOSEPHSON JUNCTION ARRAYS WITH
TWO-JUNCTION UNIT CELLS

In Fig. 1(a) we show a regular 1d-JJA in a coplanar
transmission line geometry, with unit cells consisting of
one simple junction in series with a SQUID. Each SQUID
consists of two parallel junctions with Josephson energy EJ0.
When pierced by a flux � = BAS, where B is an applied
magnetic field and AS is the effective area of the SQUID loop,
each SQUID is effectively identical to a single junction with
tunable Josephson energy EJ = 2EJ0 cos(2π |�|/�0), and we
can thus regard the design in Fig. 1(a) as a design with two
different junctions per unit cell. Linearizing the Josephson
relation, each effective junction is described by its capacitance
CJ and the linear Josephson inductance LJ = �2

0/(4π2EJ)
with superconducting flux quantum �0 = h/2e. We consider
situations where quasiparticle tunneling can be neglected,
with the voltage drop across each junction less than the
superconducting energy gap, V < 2�/e. We also introduce
the plasma frequency ωp = 1/

√
LJCJ for use later on.

In Fig. 1(b) we show a simple model of a 1d-JJA with
identical junctions, taking into account a capacitance to ground
C0. Note that in the limit CJ → 0 the model reduces to the
discrete, lumped element model of a transmission line for
transverse electromagnetic waves. In Fig. 1(c) we show the
generalization studied in this article, where the array consists
of a lattice of unit cells each consisting of a basis of two
Josephson junctions, for which we introduce an additional
index 1 or 2 to the preceding parameters [see Fig. 1(c)].

(a) (b)

FIG. 2. (Color online) Dispersion relation for the model with
two junctions when the junction parameters are (a) symmetric,
LJ2/LJ1 = 1, and (b) asymmetric, with weak (LJ2/LJ1 = 1.1) and
stronger (LJ2/LJ1 = 5) asymmetry. In all cases we used CJ1 = CJ2

and C01/CJ1 = C02/CJ2 = 0.5.

For nonidentical junctions in the unit cell one expects a
band gap in the dispersion relation of the transmission line,
in analogy to a diatomic chain. This gap is shown in Fig. 2
for two different values of asymmetry parameter LJ2/LJ1.
The gap does not appear in systems with simple unit cells as
in Fig. 1(b), where each unit cell has only one independent
degree of freedom due to loop constraints. In this case,
linearization of the equations of motion in small value of
phase difference across each junction approximates the system
as coupled harmonic oscillators and a traveling wave ansatz
yields a single branch in the dispersion relation. This branch
will have an upper cutoff frequency due to the discreteness
of the model, but no second branch and no gap. However,
if we consider different unit cells consisting of two original
cells, each of the new cells has in general two independent
degrees of freedom. This results in a representation of the
dispersion relation where the original branch is mirrored at
half the Brillouin zone and thus appears as two branches, as
shown in Fig. 2(a). Here we used the length a for the new unit
cell. If an asymmetry of parameters is introduced within each
unit cell, a splitting in the dispersion relation into “acoustic”
and “optical” bands occurs, as shown in Fig. 2(b).

As shown in Appendix A, the dispersion relation for an
infinite array in the linear approximation is

[ω±(k)]2 = B

2A
±

√
B2 − 4AC

2A
, (1)

where

A = (C01 + C02)(CJ1 + CJ2) + C01C02 + CJ1CJ2βk,

B = C01 + C02

L12
+

(
CJ1

LJ2
+ CJ2

LJ1

)
βk, (2)

C = βk

LJ1LJ2
,

with 1/L12 = 1/LJ1 + 1/LJ2 and βk = 2[1 − cos(ka)]. Since
A > 0, one sees from the defining Eq. (1) that ω+(k) � ω−(k)
for any wave vector k.

The lower and upper edges of the gap are defined as

ωgL = max
k

{ω−(k)},
(3)

ωgU = min
k

{ω+(k)},
respectively. In the following we consider positive inductances
and capacitances, for which the maximum of the lower band
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FIG. 3. (Color online) The upper and lower band edge in
dependence of the ratio LJ2/LJ1. We used CJ2/CJ1 = 0.5 and C01 =
C02 = 0.2CJ1. Thin vertical lines mark where ξ1 or ξ2 changes sign.

edge always appears at wave vectors ka = π , where βk = 4,
while the upper band edge can appear at ka = 0 or ka = π ,
depending on the parameters [cf. Fig. 2(b)]. More explicitly,
we find

ωgL = ω−(k = π/a),

ωgU =
{

ω+(k = 0) = 1√
L12C�

for ξ1 · ξ2 � 0,

ω+(k = π/a) for ξ1 · ξ2 � 0,

where we defined C� = CJ1 + CJ2 + C01C02/(C01 + C02),
and

ξ1 = [C02CJ2 + C01(C02 + CJ2)]LJ2

− (C01 + C02)CJ1LJ1,
(4)

ξ2 = [C02CJ1 + C01(C02 + CJ1)]LJ1

− (C01 + C02)CJ2LJ2.

We show in Fig. 3 how the gap can be moved in frequency
if one can control the ratio of effective Josephson inductances
LJ2/LJ1. The gap vanishes, ωgL = ωgU, if both C01 = C02 ≡
C0 and

LJ1CJ1 = LJ2CJ2 + C0(LJ2 − LJ1)/2. (5)

Kinks in the plot appear at the points, where either ξ1 or
ξ2 changes sign. According to Eq. (4) this corresponds to
switching the position of the minima of ω+(k) between k = 0
and k = π/a, which can be shown to be realized by a flat
(constant in k) upper branch ω+(k) at these points.

Tunable inductances as in Fig. 3 can be achieved by
employing one SQUID [Fig. 1(a)] or two SQUIDs in each
unit cell. A design with one junction and one SQUID per
unit cell, as shown in Fig. 1(a), has the advantage that one of
the two Josephson energies, which are inversely proportional
to the respective inductances, can be tuned continuously
without changing the other Josephson energy. A design with
two SQUIDs per unit cell has different advantages. Clearly,
one can then tune both Josephson energies. If one chooses
different areas AS1 and AS2 for the two SQUIDs, a change in
magnetic field �B = �0/AS1 leaves the Josephson energy of
the first SQUID invariant, while it changes that of the second
SQUID. In this sense, one can tune both Josephson energies
independently with only one common magnetic field.32 Thus,

(a)

gap

(b)

gap

FIG. 4. (Color online) (a) Real part of the impedance (for an
infinite array) and (b) dispersion relation. Both show a gap in the same
frequency range. The impedance is normalized by ZJ1 = √

LJ1/CJ1

and the frequency by ωp1 = 1/
√

LJ1CJ1. The length of a unit cell
is called a, and k is the wave number of a traveling wave solution.
Here we used parameters CJ2 = C01 = 0, where the model reduces to
that of one junction and an additional inductance. Further, we chose
parameters C02/CJ1 = LJ2/LJ1 = 0.1.

this design is preferable in experiments which test many
combinations of Josephson inductances (LJ1,LJ2), while the
aforementioned design is better if one needs a continuous
change of one inductance, which might become important for
applications.

We briefly note another special case included in the two-
junction model of Fig. 1(c): If we choose C01 = CJ2 = 0 and
regard LJ2 as a geometric inductance instead of a Josephson
inductance, we recover a model containing one junction and an
additional inductance in series. This model was studied earlier,
where the inductance L0 was included in order to model the
electromagnetic inductance of the JJA transmission line.33 This
inductance led to a gap in the real part of the impedance, taken
between input port and ground,33 which corresponds to a gap in
the dispersion relation as shown in Fig. 4. However, for typical
parameters the gap appeared at approximately 1011–1014 Hz.
While the lower frequency could, in principle, be reduced
by lowering the plasma frequency of the junction, the upper
frequency extended beyond the range of validity of the simple
Josephson junction model used. With the two-junction model
presented here, however, the upper band edge can be reduced
in frequency by orders of magnitude.

A geometric inductance L0 � LJ introduces a much
stronger asymmetry, which explains the wide gap and ex-
perimentally inaccessibly high frequency of the upper band
edge (which tends to infinity for L0/LJ → 0) in the model
of Ref. 33. With the two-junction model, we have a wide
range of accessible parameters so that we can engineer the
band gap in an appropriate frequency range.

Our main results so far are Eqs. (1)–(5), which provide
analytical solutions for the dispersion relation and band edges
for an infinite array with two-junction unit cells in the linear
regime, that is, the 1d-JJA analog of a diatomic lattice. In
the following we consider possibilities to achieve the required
parameter space experimentally and also discuss effects of
finite size, finite nonlinearity, and nonidentical junctions.

III. EXPERIMENTAL CONSIDERATIONS

A. Range of validity and experimental parameters

The two branches in the dispersion relation and the
associated gap in frequency, where no propagating modes
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exist in the JJA transmission line, could be a useful property
for the design of quantum circuits in the microwave region.
The essential ingredient for realizing this gap is an inequality
of the parameters for each of two junctions in the basis of
the periodic structure, such that Eq. (5) is not fulfilled, or
such that C01 �= C02. In this section we examine realistic
designs, subject to the constraints of fabrication, which can
achieve this asymmetry. The designs naturally fall into two
different parameter regimes depending on the transmission
line geometry used, coplanar or stripline.

When the JJA is made in a coplanar waveguide (CPW)
geometry, where the ground plane is on the sides of the JJA,
the parameter regime CJ1,CJ2 � C01,C02 is easily realized. In
this regime the gap vanishes when the plasma frequencies of
the two junctions become equal, and one should thus aim for
parameters ωp1 �= ωp2 in order to have a gap. When fabricating
JJAs, typically all junctions are made in the same process step,
resulting in a tunnel barrier which is nearly uniform across the
entire chip or wafer. In this case, the junction capacitance CJ

and Josephson inductance LJ will be proportional and inversely
proportional to the junction area, respectively, and the plasma
frequency ωp = 1/

√
LJCJ will therefore be independent of

the junction area. Thus, simply changing the junction area in
the fabrication process will not achieve ωp1 �= ωp2, which is
required to have a gap.

Subject to the constraint of uniform tunnel barriers, there are
two ways to bring down the plasma frequency. The first method
is to increase LJ of one of the junctions by forming a SQUID
loop of this junction and applying an external magnetic flux
[see Fig. 1(a)]. This method is attractive because changing the
external flux corresponds to tuning the frequency range of the
transmission gap. However, dropping the plasma frequency in
this way also drops the critical current of the transmission line,
and therefore nonlinear corrections will become important
at much lower power. The second possibility to drop the
plasma frequency is to fabricate an on-chip capacitance in
parallel with each junction. This method will not cause a
degradation of critical current; however, it does require more
layers of lithography than the simple single-layer process used
in the shadow deposition technique. Fabrication with the Nb
trilayer technique, however, provides this parallel capacitance
naturally.34

When designing an array in CPW geometry, one finds
that the characteristic impedance of the array is not well
matched to the termination impedance. When the array is
terminated with a direct connection to an electrical lead, the
termination of the array impedance at microwave frequencies
will be approximately Z0/2π = 60	, set by the free space
impedance Z0 = 377 	. The transmission line impedance
ZA of the JJA, which is the pure real impedance of an
infinite array, is in the zero frequency limit given as ZA(0) =√

(LJ1 + LJ2)/(C01 + C02). It can be much larger than Z0 in
the CPW geometry, where C0 is relatively small, especially
if LJ is made large by suppressing the critical current. We
desire that ZA � RQ = h/4e2 = 6.45 k	, in order to avoid
quantum fluctuations of the phase which are not included in our
model based on classical phase dynamics. When ZA � RQ,
one finds that large quantum fluctuations of the phase result
in a Coulomb blockade, and our assumption of classical phase
dynamics has completely broken down.35

An alternative route to circuit design is based on the stripline
geometry, where the array is fabricated on top of a ground plane
with a thin, insulating (nontunneling) barrier separating the
array islands from the ground plane. For the stripline geometry,
one easily realizes the regime CJ1,CJ2 � C01,C02. In this
regime, it is not necessary to have different plasma frequencies
of the two junctions, and we find that a considerable gap
in transmission also occurs if C01 �= C02. In this case the
gap appears well below the plasma frequency. The condition
C01 �= C02 is easily realized in the stripline geometry when the
junctions are made with overlapping films.

We have formulated a design for a JJA on an heavily
oxidized Al ground plane, to be fabricated with the shadow
evaporation technique. In our Al tunnel junction fabrication,
we find that it is possible to achieve plasma frequencies as
low as ωp1/2π = ωp2/2π = 33 GHz. A design with large area
base electrodes (2.5 × 20 μm) and long, narrow Dolan bridges
(0.1 × 2.5 μm) with small overlap (0.1 μm) after shadow
evaporation can achieve the following parameters: C01 =
0.68 pF, C02 = 3.4 fF, CJ1 = 2.0 pF, CJ2 = 12 fF, with the
array critical current being dominated by the smaller junction
2, IC2 = 170 nA. For this design, we find that the lower gap
edge comes down in frequency to ωgL/2π = 8.5 GHz, in a
frequency range accessible to present day qubit designs or
broadband transmission measurements. For this design, the
transmission line impedance of the array is ZA(0) = 53 	,
which is well matched to the impedance of the input and
output ports of an array with high-frequency leads connected
at each end. Such a design, with a rather low critical current
and therefore strongly nonlinear inductance, is ideal for the
distributed parametric amplifier.18 In the low power regime,
where linear behavior is expected, we find that such an array
makes a good superconducting low-pass filter, with a very
sharp drop in transmission at 8.5 GHz in a design with only
20 unit cells in series.

B. Influence of parameter spread and transmission

Thus far we have assumed that the junctions can be
fabricated identically. In reality there will be a spread of
junction parameters in the fabrication, or disorder in the lattice.
In one-dimension, even small disorder leads to Anderson
localization36 of all states of an infinite system. However, for
weak disorder the localization length can be much larger than
the finite-size array used in experiments. Thus, we expect that
the gap in the spectrum, impedance, and transmission will
persist provided that the disorder is weak enough and the array
is short enough that localization effects can be ignored. We
investigated these effects by numerical simulation, where the
results are shown in Fig. 5. These results were obtained by
classical circuit theory, where we simulated a random spread of
Josephson inductances with normal distribution and standard
deviation 5% in Figs. 5(b), 5(d), and 5(f). This parameter
spread, or disorder, breaks the translational symmetry of the
array, and wave vectors are no longer well defined. However,
it is still possible to investigate the density of states, which is
shown in Figs. 5(a) and 5(b). Here we counted the number of
states in a discrete frequency interval, using periodic boundary
conditions on an array with 500 unit cells, large enough to
count a reasonable number of states. Despite the spread in
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FIG. 5. (Color online) (a),(b) Density of states. (c),(d) Transmis-
sion. (e),(f) Voltage at the sites. In parts (b), (d), and (f), a 5% standard
deviation in Josephson inductances is used. Further, LJ2 = 0.25LJ1,
C01 = C02 = 0.2C1 = 0.2C2, Zin = Zout, and Zin/ZA(0) = 0.2.

parameters, a gap can still be clearly observed in the density
of states. Localization effects cannot be observed from the
density of states. However, an investigation of the eigenmodes
shows localized states in the gap region, near the gap edge (not
shown).

In an experiment, it is easier to measure transmission
than the dispersion itself. Furthermore, accurate boundary
conditions on a finite length array become important for a
real experiment. In Figs. 5(c)–5(f) we simulated an array
with 30 unit cells and boundary conditions defined by the
input and output leads with transmission line impedances
Zin = Zout = 50 	. Comparing Figs. 5(b) and 5(d), some
states appearing at the upper band edges in the density of states
are localized and do not contribute to the transmission. The
effect is, however, quite small for such short arrays. We have
also performed simulations with 500 junctions (not shown),
where localized states appear near the band edge with higher
probability.

The array simulated previously behaves like a microwave
resonator, even though it has direct electrical connection to the
input and output terminals. It supports standing waves because
the input and output impedances Zin,Zout are not matched to
the array impedance ZA. The standing waves can be seen by
looking at the voltage at each site as in Figs. 5(e) and 5(f). Note
that because ZA > Zin = Zout, the voltage antinode occurs in
the middle of the array for the fundamental mode, opposite
to standing waves in resonators formed by a large pointlike
impedance at each end of a transmission line, where Zin,Zout >

ZA. Each standing wave condition is associated with a peak
in the transmission as calculated in Figs. 5(c) and 5(d) for the
case of no disorder and 5% parameter spread, respectively.
For frequencies inside the gap region, the transmission drops
drastically, which can be understood by an exponential decay
of voltage amplitude from the edge of the array. However, the
broad gap in transmission remains essentially unaffected by
a 5% spread in parameters. Thus, the design of such a gap
appears to be a robust and useful feature for quantum circuit
engineering.

IV. SUMMARY AND OUTLOOK

We investigated the linear behavior of regular 1d-JJAs with
generalized unit cells, for example, unit cells consisting of
two junctions. The dispersion relation and the real part of the
impedance show a gap in the dispersion relation, which is
not present in arrays with only one junction per unit cell. We
derived the parameter dependence of the gap and found that
for a design with two different Josephson junctions, the gap
appears at frequencies of the same order of magnitude as the
plasma frequencies of the two junctions. We suggested how
to lower these frequencies in an experimental setup in order
to shift the gap to an accessible frequency range, by replacing
one of the two junctions per unit cell with a SQUID, such
that the gap can be tuned in situ, or by forming two different
capacitances to ground. The gap appears to be robust against
a realistic parameter spread of the junctions (5% standard
deviation), and we have simulated a transmission experiment
which we modeled with realistic boundary conditions.

Our results could be used for comparatively simple demon-
stration of tunable artificial crystals with Josephson junctions.
Such tunable artificial crystals could be used in circuit QED
for frequency specific filters in qubit circuits. For example,
by placing a qubit in the middle of an array, when the qubit
frequency lies inside the region of the gap where no traveling
modes are available, we expect the relaxation of the qubit to be
strongly suppressed. Decoherence of a qubit is composed not
only of the relaxation but also of the pure dephasing, where the
latter time scale is typically the critical, shorter one. However,
recent experiments reached extremely high decoherence times,
which, at least for part of the frequency range, appeared to be
limited by the relaxation.37 In this case, suppression of the
relaxation with a properly engineered gap would allow refined
studies on remaining sources of decoherence.

The model we presented in this paper is a linear analysis of
the JJA transmission line. The interesting effects we describe
arise due to the plasma resonance of the Josephson junctions
when they are arranged in a discrete periodic structure.
However, the linear approximation is valid only when the
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currents flowing in the junctions are much less than the critical
current. When this condition is violated, nonlinear effects
will appear, which can be very strong in comparison with
dissipative effects. These nonlinear effects give rise to a host
of interesting phenomena, such as parametric amplification.30

Here, the ability to match the JJA transmission line impedance
with the electromagnetic transmission line impedance, which
is possible for the case of stripline geometry, leads to the
possibility of a broad band parametric amplifier.28 Another
interesting nonlinear effect is the trapping or localization
of energy in discrete breather modes,38 where a gap in the
dispersion relation is used to prevent the radiation damping
of Josephson oscillations in a junction in the middle of the
array.39 We hope that the analysis presented here will aid the
development of future experiments in these directions.
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APPENDIX A: DERIVATION OF THE
DISPERSION RELATION

The Lagrangian for the model consisting of unit cells with
two types of Josephson junctions [Fig. 1(c)] is given as

L2 =
N−1∑
j=0

[
C01

2
�̇2

j,1 + C02

2
�̇2

j,2

]

+
N−1∑
j=0

[
CJ1

2
(�̇j−1,2 − �̇j,1)2 + CJ2

2
(�̇j,1 − �̇j,2)2

]

+
N−1∑
j=0

[EJ1 cos(φj−1,2 − φj,1) + EJ2 cos(φj,1 − φj,2)],

(A1)

where we considered N unit cells with periodic boundary
conditions and where we eliminated the Josephson phases φJ,j

by generalized Kirchhoff constraints and defined fluxes and
phases �j,1/2 = �0φj,1/2/2π at the capacitors to ground.

From this Lagrangian, one can find the equations of motion,
and, after the linear approximation, φJ,j � 1, make a traveling
wave ansatz, (

�j,1

�j,2

)
=

(
uk

vk eika/2

)
ei(kja−ωt). (A2)

Here we introduced a length a for the total unit cell, which
results in a factor a/2 for a single junction. The equations of
motion can be rewritten as a matrix F multiplying the vector
(uk,vk)T such that F(uk,vk)T = 0. Nontrivial solutions exist
only when the determinant of F is zero, which results in the
dispersion relation stated in Eq. (1). The range of validity of
the linear approximation is discussed in Appendix B.

APPENDIX B: MORE GENERAL UNIT CELLS

Here we review the linear framework which we used to treat
nonperiodic arrays as discussed in Sec. III B, and which can
also be used for more general types of unit cells, for example,
with three or more different Josephson junctions or SQUIDs.
Finally, we discuss the effects of the nonlinear terms neglected
so far.

Nonperiodic arrays. If we allow an arbitrary combination
of capacitances, inductances and Josephson junctions, the
Lagrangian in the linear regime can always be written as

L =
M∑

α,β=1

[
�̇α

(C)αβ

2
�̇β − �α

(L−1)αβ

2
�β

]
. (B1)

Here, M is the total number of independent variables and �j

are independent flux variables. In the case of the two-junction
unit cell we had M = 2N , with N the number of unit
cells, and as variables we used the integrated voltage at the
capacitances to ground, �j = ∫ t

−∞ Vj (t ′) dt ′. Further, C is
the capacitance matrix and L−1 is the inverse inductance
matrix, which can contain both the kinetic inductance due
to Josephson junctions and the geometric inductance. This
is a problem of coupled harmonic oscillators, which can
be diagonalized by the transformation � → �̃ = UT C1/2�.
Here we took into account that the matrices C and L can
always be chosen symmetric and defined U as the matrix which
has columns consisting of the normalized, real eigenvectors of
the matrix �2 ≡ C−1/2L−1C−1/2. The transformed Lagrangian

is given as L̃ = 1
2

∑M
λ=1[ ˙̃�

2

λ − ω2
λ�̃

2
λ], where we introduced

the eigenvalues ω2
λ of �2. These frequencies ωλ resemble

the dispersion relation for a regular array, and can still
be calculated in the presence of imperfections as used in
Sec. III B.

The equations of motion in this eigenbasis are decoupled
and given as ¨̃�λ = −ω2

λ�̃λ. The Hamiltonian corresponding
to the transformed Lagrangian is given as H = 1

2

∑
λ(Q̃2

λ +
ω2

λ�̃
2
λ), where Q̃λ = ˙̃�λ is the conjugate variable to �̃. For

later convenience, this Hamiltonian can be rewritten in the
standard form H = ∑N

λ=1 h̄ωλ(a†
λaλ + 1

2 ) when creation and
annihilation operators are defined by the equations

�̃λ =
√

h̄/(2ωλ)(a†
λ + aλ),

(B2)
Q̃λ = i

√
h̄ωλ/2(a†

λ − aλ).

Periodic arrays with extended unit cells. We consider now
the condensed-matter-like special case of Eq. (B1), where the
M degrees of freedom can be decomposed into a lattice with
N unit cells, each having a basis with m degrees of freedom.
The Lagrangian can then be rewritten as

L =
N∑

j,l=1

m∑
r,s=1

[
�̇j,r

(C)(rs)
j l

2
�̇l,s − �j,r

(L−1)(rs)
j l

2
�l,s

]
.

(B3)
The first index in �j,l specifies the place in the lattice, and
the second index specifies the degree of freedom within the
basis of this unit cell. Accordingly, we now have capacitance
and inductance supermatrices, whose lower indices act in
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the space of lattice places, and the upper indices act in the
space of the basis.

This representation is useful in a periodic array with
identical unit cells, such that C

(rs)
j l = C

(rs)
j+x,l+x and (L−1)(rs)

j l =
(L−1)

(rs)
j+x,l+x for any x ∈ Z. After the standard ansatz24

(�j,1,�j,2, . . . ,�j,n) = 1
N

∑
k eika(uk,1,uk,2, . . . ,uk,n), the

Lagrangian decouples due to the periodicity into L =
1
N

∑
k Lk with

Lk =
m∑

r,s=1

[
u̇−k,r

Crs(k)

2
u̇k,s − u−k,r

(L−1)rs(k)

2
uk,s

]
. (B4)

For each wave vector k, a matrix structure as in Eq. (B1)
remains. The band structure for given k can then be obtained
in analogy to Appendix A or by explicit diagonalization,
where the relevant matrices are now defined as Cr,s(k) ≡∑N

l=1 eiklaC
(r,s)
1,1+l and (L−1)r,s(k) ≡ ∑N

l=1 eikla(L−1)
(r,s)
1,1+l .

Diagonalization is achieved by a transformation as shown
earlier, ũ= U† C

1/2
u, and creation and annihilation operators

are introduced by ũk,n = √
h̄/(2ωk,n)(a†

−k,n + ak,n).
Nonlinearities. In our derivation of the dispersion relation,

we approximated terms of form cos(φα − φβ) by expanding
to the quadratic term in the phases or fluxes (linear in the
equation of motion). Here we briefly consider the fourth-
order terms, which more generally can be of form Lnl =∑

α
EJα (2π/�0)4

4! (
∑

β γ
(α)
β �β)4, where the matrix elements γ

(α)
β

take values 1, −1, and 0 only. We calculate the leading-order
correction to the dispersion due to these terms for a weak
nonlinearity. After transformation to the eigenbasis of the
linearized system and making use of Eq. (B2), the nonlinearity
can be brought to the form

Hnl = −
∑

λ,μ,ν,σ

fλμνσ (aλ + a
†
λ)(aμ + a†

μ)(aν + a†
ν)(aσ + a†

σ ),

(B5)
with coefficients fλμνσ to be discussed in what follows.

We consider a weak nonlinearity and a monotonic drive with
frequency ωd such that the system response is dominated by the
linear behavior, and predominantly one mode k in a specific
band n is highly excited. Due to the huge population Nλ of
this state λ = (k,n), most interactions will be between this

state and at most one other state. Taking into account energy
conservation in the sense of a rotating wave approximation,
we can approximate the nonlinear part of the Hamiltonian as

Hnl = −6fλλλλa
†
λa

†
λaλaλ − 24

∑
μ,μ �=λ

fμμλλa
†
λaλa

†
μaμ. (B6)

The Heisenberg equation of motion then reads ih̄ȧλ = (h̄ωλ −
12fλλλλa

†
λaλ − 24

∑
μ,μ �=λ fμμλλa

†
μaμ)aλ.

Note that other states than λ can in general be excited due
to the nonlinearity, which mixes different modes. However,
if the population Nλ of mode λ is much higher than the
population of all other modes together, only the first term
given earlier is relevant and leads within a semiclassical
approximation to a frequency shift in the dispersion relation
ω(λ) → ω(λ) − 12fλλλλNλ, provided that fλλλλNλ � h̄ωλ.
To fulfill both the latter condition and the assumptions of
the semiclassical approximation, we have to stay in the
regime fλλλλ � h̄ωλ/Nλ � h̄ωλ. While one can change Nλ

via the drive strength, the quantity fλλλλ is given from the
device geometry, and derived from the capacitive energies and
the (potentially tunable) Josephson energies.

In general an expression for fλλλλ becomes complicated
and is best obtained numerically, but for a periodic array
with a one-junction unit cell (and thus only one band, n = 0)
one can obtain a simple analytical expression. Taking into
account that the frequency of the linear term is given as
h̄ωk = √

8EC0EJβk/(1 + βkCJ/C0), where βk = 4 sin2(ka/2)
and EC0 = e2/2C0, we find fk,−k,k,−k = −(h̄ωk)2/24NEJ.
Note that taking into account the EJ dependence of the
frequency, the strong Josephson energy cancels out, and the
nonlinearity is in this regime dependent on the charging
energy scales, that is, on the distribution of the capacitances.
The condition of a weak nonlinearity above (f � h̄ω) thus
requires that h̄ωk � EJ, which for said ωk is equivalent to
EC,EC0 � EJ. This requirement can also be expressed in
engineering terms as ZA � RQ, as stated in the main text.
While we only calculated the prefactor of the nonlinearity
fk,−k,k,−k explicitly for an array with a single junction per unit
cell, we do not expect conceptual changes for the validity
of the linear regime when two junctions per unit cell are
present.

*Present address: Institute for Theoretical Physics, University of Inns-
bruck, and Institute for Quantum Optics and Quantum Information,
A-6020 Innsbruck, Austria.
1G. Schön and A. D. Zaikin, Phys. Rep. 198, 237 (1990).
2Yu. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73, 357
(2001).

3L. Zhou, Y. B. Gao, Z. Song, and C. P. Sun, Phys. Rev. A 77, 013831
(2008).

4A. L. Rakhmanov, A. M. Zagoskin, S. Savelev, and F. Nori, Phys.
Rev. B 77, 144507 (2008).

5S. Savelev, A. L. Rakhmanov, and F. Nori, Phys. Rev. Lett. 94,
157004 (2005); Phys. Rev. B 74, 184512 (2006); V. A. Yampolskii,
S. Savelev, O. V. Usatenko, S. S. Melnik, F. V. Kusmartsev, A. A.
Krokhin, and F. Nori, ibid. 75, 014527 (2007); S. Savelev, V. A.

Yampolskii, A. L. Rakhmanov, and F. Nori, Rep. Prog. Phys. 73,
026501 (2010).

6M. Ricci, N. Orloff, and S. M. Anlage, Appl. Phys. Lett. 87, 034102
(2005); M. Ricci and S. M. Anlage, ibid. 88, 264102 (2006);
M. C. Ricci, Hua Xu, R. Prozorov, A. P. Zhuravel, A. V. Ustinov, and
S. M. Anlage, IEEE Trans. Appl. Supercond. 17, 918 (2007).

7C. Du, H. Chen, and S. Li, Phys. Rev. B 74, 113105 (2006).
8N. Lazarides and G. P. Tsironis, Appl. Phys. Lett. 90, 163501
(2007).

9E. Ozbay, Science 311, 189 (2006).
10R. Fazio and H. van der Zant, Phys. Rep. 355, 235 (2001).
11R. M. Bradley and S. Doniach, Phys. Rev. B 30, 1138 (1984).
12S. L. Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar, Rev. Mod.

Phys. 69, 315 (1997).

014511-7

http://dx.doi.org/10.1016/0370-1573(90)90156-V
http://dx.doi.org/10.1103/RevModPhys.73.357
http://dx.doi.org/10.1103/RevModPhys.73.357
http://dx.doi.org/10.1103/PhysRevA.77.013831
http://dx.doi.org/10.1103/PhysRevA.77.013831
http://dx.doi.org/10.1103/PhysRevB.77.144507
http://dx.doi.org/10.1103/PhysRevB.77.144507
http://dx.doi.org/10.1103/PhysRevLett.94.157004
http://dx.doi.org/10.1103/PhysRevLett.94.157004
http://dx.doi.org/10.1103/PhysRevB.74.184512
http://dx.doi.org/10.1103/PhysRevB.75.014527
http://dx.doi.org/10.1088/0034-4885/73/2/026501
http://dx.doi.org/10.1088/0034-4885/73/2/026501
http://dx.doi.org/10.1063/1.1996844
http://dx.doi.org/10.1063/1.1996844
http://dx.doi.org/10.1063/1.2216931
http://dx.doi.org/10.1063/1.2216931
http://dx.doi.org/10.1109/TASC.2007.898535
http://dx.doi.org/10.1103/PhysRevB.74.113105
http://dx.doi.org/10.1063/1.2722682
http://dx.doi.org/10.1063/1.2722682
http://dx.doi.org/10.1126/science.1114849
http://dx.doi.org/10.1016/S0370-1573(01)00022-9
http://dx.doi.org/10.1103/PhysRevB.30.1138
http://dx.doi.org/10.1103/RevModPhys.69.315
http://dx.doi.org/10.1103/RevModPhys.69.315


CARSTEN HUTTER et al. PHYSICAL REVIEW B 83, 014511 (2011)

13K. A. Matveev, A. I. Larkin, and L. I. Glazman, Phys. Rev. Lett.
89, 096802 (2002).

14J. Bylander, T. Duty, and P. Delsing, Nature (London) 434, 361
(2005).

15M. Cholascinski and R. W. Chhajlany, Phys. Rev. Lett. 98, 127001
(2007).

16I. M. Pop, I. Protopopov, F. Lecocq, Z. Peng, B. Pannetier,
O. Buisson, and W. Guichard, Nat. Phys. 6, 589 (2010).

17A. Romito, R. Fazio, and C. Bruder, Phys. Rev. B 71, 100501(R)
(2005).

18B. Yurke, M. L. Roukes, R. Movshovich, and A. N. Pargellis, Appl.
Phys. Lett. 69, 3078 (1996).

19M. A. Castellanos-Beltran, K. D. Irwin, G. C. Hilton, L. R. Vale,
and K. W. Lehnert, Nat. Phys. 4, 928 (2008).

20J. Koch, V. Manucharyan, M. H. Devoret, and L. I. Glazman, Phys.
Rev. Lett. 103, 217004 (2009).

21V. E. Manucharyan, J. Koch, L. I. Glazman, and M. H. Devoret,
Science 326, 113 (2009).

22R. L. Kautz, Rep. Prog. Phys. 59, 935 (1996).
23M. Dhamala and K. Wiesenfeld, Phys. Lett. A 292, 269 (2002).
24N. W. Ashcroft and N. D. Mermin, Solid State Physics (Harcourt

Brace College, San Diego, 1976).
25A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang,

J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Nature
(London) 431, 162 (2004).

26D. I. Schuster, A. A. Houck, J. A. Schreier, A. Wallraff, J. M.
Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M. H. Devoret,
S. M. Girvin, and R. J. Schoelkopf, Nature (London) 445, 515
(2007).

27M. A. Castellanos-Beltran and K. W. Lehnert, Appl. Phys. Lett. 91,
083509 (2007).

28B. Yurke, P. G. Kaminsky, R. E. Miller, E. A. Whittaker, A. D.
Smith, A. H. Silver, and R. W. Simon, Phys. Rev. Lett. 60, 764
(1988).

29B. Yurke and E. Buks, J. Lightwave Technol. 24, 5054 (2006).
30E. A. Tholén, A. Ergül, E. M. Doherty, F. M. Weber, F. Grégis, and

D. B. Haviland, Appl. Phys. Lett. 90, 253509 (2007).
31R. Movshovich, B. Yurke, P. G. Kaminsky, A. D. Smith, A. H.

Silver, R. W. Simon, and M. V. Schneider, Phys. Rev. Lett. 65,
1419 (1990).

32S. Corlevi, W. Guichard, F. W. J. Hekking, and D. B. Haviland,
Phys. Rev. Lett. 97, 096802 (2006).

33D. B. Haviland, K. Andersson, and P. Ågren, J. Low Temp. Phys.
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