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Thermodynamic control by frequent quantum
measurements
Noam Erez1, Goren Gordon1, Mathias Nest2 & Gershon Kurizki1

Heat flow between a large thermal ‘bath’ and a smaller system
brings them progressively closer to thermal equilibrium while
increasing their entropy1. Fluctuations involving a small fraction
of a statistical ensemble of systems interacting with the bath result
in deviations from this trend. In this respect, quantum and clas-
sical thermodynamics are in agreement1–5. Here we predict a dif-
ferent trend in a purely quantum mechanical setting: disturbances
of thermal equilibrium between two-level systems (TLSs) and a
bath6, caused by frequent, brief quantum non-demolition7-10 mea-
surements of the TLS energy states. By making the measurements
increasingly frequent, we encounter first the anti-Zeno regime and
then the Zeno regime (namely where the TLSs’ relaxation respec-
tively speeds up and slows down11-15). The corresponding entropy
and temperature of both the system and the bath are then found to
either decrease or increase depending only on the rate of obser-
vation, contrary to the standard thermodynamical rules that hold
for memory-less (Markov) baths2,5. From a practical viewpoint,
these anomalies may offer the possibility of very fast control of
heat and entropy in quantum systems, allowing cooling and state
purification over an interval much shorter than the time needed
for thermal equilibration or for a feedback control loop.

To understand the origins of the predicted anomalies, consider a
thermal bath in equilibrium with an ensemble of quantum systems.
The energy of the quantum systems is briefly measured, with the
following effects. Classically, the equilibrium state of the systems
may remain intact, since measurements can be chosen to be non-
intrusive, that is, to involve no energy exchange, and merely to
provide ‘snapshots’ of the overall system. Likewise, quantum mech-
anically, nearly ideal (projective) measurements involve no energy
cost when performed by macroscopic detectors on isolated systems8.
However, finite-time coupling, followed by abrupt decoupling, of
two quantum ensembles, which may be viewed as the detection of
one ensemble by the other, may cause an increase in their mean total
energy16. Controlled perturbations of open quantum systems may
also cause their properties to change anomalously17,18.

Here we are concerned with the time-resolved evolution of two-
level systems (TLSs) that are initially in thermal equilibrium with a
much larger bath. We investigate how the temperature and entropy
of these systems evolve when the systems are probed by brief,
repeated measurements. Our analysis shows that the temperature
and entropy display a universal dependence on the time interval
between measurements, provided that they are frequent enough to
cause deviations from energy conservation in the system–bath
exchange19, consistent with time–energy uncertainty.

Quantitatively, we consider a TLS with energy separation "va (‘a’
denoting ‘atom’) that is weakly coupled to a thermal bath of harmonic
oscillators, characterized by a bath response or correlation (memory)
time of tc? 1/va, which typically marks the onset of equilibrium.
After equilibrium has been reached, we perform k 5 1, …, K quantum

non-demolition measurements7–10 of the TLS energy states at times
separated by Dtk 5 tk 1 1 2 tk. Each measurement has a brief duration
of tk= 1/va. Our aim is to explore the evolution as a function of the
time separation Dtk # 1/va= tc between consecutive measurements
in the uncharted non-Markov domain.

We show that this process entails three universal anomalies. The
first of these is that the quantum mechanical non-commutativity of
the system–detector and system–bath interactions causes the system
to heat up immediately after the measurement, at the expense of the
detector–system coupling but not at the expense of the bath. This
heating up occurs only for very low values of Dtk compatible with the
quantum Zeno effect (QZE)11. The second anomaly is that a transi-
tion of the TLS ensemble from heating to cooling may occur as
we vary the interval between consecutive measurements from
Dtk = 1/va to Dtk < 1/va= tc. This marks the transition from values
of Dtk compatible with the QZE to values compatible with the anti-
Zeno effect (AZE)12–15. We note that the cooling may occur even if the
bath is initially hotter. The third anomaly is that, correspondingly,
oscillations of the entropy relative to that of the equilibrium state
take place, contrary to the markovian notion of the second law of
thermodynamics2,5.

This generic scenario is governed by the following total hamilto-
nian of the system that interacts with the bath and is intermittently
perturbed by the coupling of the system to the detector (measuring
apparatus):

H tð Þ~HtotzHSD tð Þ

Htot~HSzHBzHSB

Here HS is the hamiltonian of the TLS, with ground and excited
states jgæ and jeæ, respectively; HB is that of the thermal bath com-
posed of harmonic oscillators with energies "vl (l denoting the
mode of the bath); HSB 5 SB is the system–bath interaction hamil-
tonian19 (the spin-boson interaction), which is a product of the
system-dipole (or spin-flip) operator S and the operator B describing
the bath excitations and de-excitations; and HSD(t) is the time-
dependent measurement hamiltonian that couples the system to a
detector consisting of energy-degenerate ancillae (for details, see
Supplementary Information section A). It is essential that the coup-
ling hamiltonians HSB and HSD do not invoke the rotating-wave
approximation19; that is, we do not impose energy conservation
between the system and the bath or the detector, on the timescales
considered15.

The near-equilibrium state rtot before a measurement has three
pertinent characteristics (see Supplementary Information section B).
First, it displays system–bath entanglement with off-diagonal matrix
elements Æejrtotjgæ ? 0. Second, the system is described by a diagonal
reduced density matrix rS 5 TrBrtot (TrB denoting trace over the
bath) in the HS eigenbasis. Third, the mean interaction energy
ÆHSBæ is negative, assuming that rtot weakly deviates from the ground

1Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel. 2Theoretische Chemie, Universitaet Potsdam, Potsdam 14476, Germany.

Vol 452 | 10 April 2008 | doi:10.1038/nature06873

724
Nature   Publishing Group©2008

www.nature.com/nature
www.nature.com/nature
www.nature.com/doifinder/10.1038/nature06873


state of Htot: ÆHSBæ 5 ÆHtotæ 2 ÆHS 1 HBæ , 0. This is because the
correction to the ground-state energy of Htot due to a weakly per-
turbing interaction HSB is negative (to leading second order).

We next consider the disturbance of this equilibrium state by a
nearly impulsive (projective) quantum measurement (t R 0) of the
TLS, in the basis {jgæ, jeæ}. Such measurements do not resolve the
energies of the TLS states, due to time–energy uncertainty. However,
they can discriminate between states of different symmetry, for
example different angular momenta19. The measurement correlates
the TLS energy eigenstates with mutually orthogonal states of an
ancillary detector and has distinctly quantum mechanical conse-
quences (see Supplementary Information section A): using the
energy supplied by HSD(0 , t , t) (the system–detector coupling),
but without changing ÆHDæ, it eliminates the mean system–bath
interaction energy; that is, it sets ÆHSBæ, the pre-measurement value
of which was negative, to zero. Thus, for 0 # t #t:

HSB 0ð Þh iv0? HSB tð Þh i~0

HSD tð Þh i~{ HSB tð Þh i
This energy transfer, resulting in a change in the entanglement
between the system and the bath, triggers the quantum dynamics
that redistributes their mean energy and entropy.

The information gained from such measurements may be used to
sort system sub-ensembles according to their measured energy, to
extract work or entropy change, in the spirit of Maxwell’s demon20.
Here, however, we let the entire TLS ensemble evolve independently
of the measured result; that is, we trace out the detector states, a
procedure known as non-selective, or unread, measurements10.

After the measurement (because HSD(t $ t) 5 0), time–energy
uncertainty at Dt # 1/va results in the breakdown of the rotating-
wave approximation; that is, ÆHS 1 HBæ is not conserved as Dt grows.
Only ÆHtotæ is conserved, by unitarity, until the next measurement.
Hence, the post-measurement decrease of ÆHSBæ with Dt, signifying
the restoration of equilibrium, ÆHSB(t)æ 5 0 R ÆHSB(t 1Dt)æ , 0, is
at the expense of an increase in ÆHS 1 HBæ 5 ÆHtotæ 2 ÆHSBæ, that is, a
heating of the system and the bath combined:

d

dt
HSh iz HBh ið Þ

����
t z Dt

w0

d

dt
HSBh i

����
t z Dt

v0

ð1Þ

The post-measurement evolution of the system alone, described by
rS 5 TrBrtot, is not obvious. Its Taylor expansion:

rS tzDtð Þ<rS tð ÞzDt _rrS tð ÞzDt2

2
€rrS tð Þz � � � ð2Þ

where dots denote differentiation with respect to time, holds at short
evolution times Dt= 1/va. The zeroth-order term is unchanged by
the measurement: rS(t) 5 rS(t # 0). The first derivative vanishes at
t 5 t(Dt 5 0) owing to the definite parity of the bath density operator
correlated with jgæ or jeæ (see Supplementary Information section B).
This initial post-measurement vanishing, _rrS tð Þ~0, is the QZE con-
dition11,13–15. The time evolution of rS is then governed by its second
time derivative, €rrS tð Þ, which can be shown (see Supplementary
Information section B) to have the same sign as sz 5 jeæÆej2 jgæÆgj,
the z Pauli matrix, which is the population difference operator of the
TLS. Hence, the second derivative in equation (2) is positive shortly
after the measurement, consistent with equations (1), if there is no
initial population inversion of the system, that is, for non-negative
temperature.

The evolution of rS at longer times (in the regime of weak system–
bath coupling) may be approximately described (as verified by our
exact numerical simulations21,22; see Supplementary Information sec-
tion C) by the second-order non-markovian master equation (Fig. 1
main panel). Because rS is diagonal, the master equation describing it
can be cast into the following population-rate equations15 (we drop the
subscript ‘S’ in what follows and set the measurement time to be t 5 0):

_rree tð Þ~{ _rrgg tð Þ~Rg tð Þrgg{Re tð Þree ð3Þ

Re tð Þ~2t

ð?
{?

dvGT vð Þsinc v{vað Þt½ �

Rg tð Þ~2t

ð?
{?

dvGT vð Þsinc vzvað Þt½ �
ð4Þ

GT vð Þ~ nT vð Þz1ð ÞG0 vð ÞznT {vð ÞG0 {vð Þ
Here sinc xð Þ~sin xð Þ=x is the Fourier transform of the time interval
after the measurement, GT(v) is the temperature-dependent coupling
spectrum of the bath, G0(v) is the zero-temperature coupling spec-
trum with peak coupling strength c at v0 and spectral width ,1/tc, and

nT vð Þ~ ebv{1
� �{1

is the inverse-temperature-dependent (that is,

b-dependent) population of bath mode v.
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Figure 1 | System and bath evolution as a
function of time. The main panel shows the
excited-level population as a function of time for
the initial zero-temperature product state of the
system and bath. The population relaxes to quasi-
equilibrium after a few oscillations. It is then
subjected to a series of measurements (vertical
dotted lines). Measurements of finite duration
(tk 5 0.11/va) (black line) result in a larger
heating up than do impulsive measurements
(green line), but the dominant effect is the same
for both. We observe agreement between the
results of the second-order master equation (blue
line), two-quanta exchange with a discrete bath
(black and green lines), and the exact numerical
solution for a discrete bath of 40 modes (red line).
The horizontal axes of the inset panels all indicate
vat/p, as in the main panel: a, relaxation rates Rg

(solid line) and Re (dotted line) as functions of
time; b, negative of the rate of change of relative
entropy, s(t); c, excitations of the 40 bath modes
in the two-quanta model as functions of time.
Parameters: tc 5 10/va, v0 5 va, c 5 0.07va.
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The dynamics of equation (3) is determined by Re(t) and Rg(t),
which are respectively the relaxation rates of the excited and ground
states. Their non-Markov time dependence yields three distinct
regimes, universally dependent on the post-measurement times t of
the spin-boson evolution.

First, at short times t= 1/va= tc, the sinc functions in equations
(4) are spectrally much broader than is GT. The relaxation rates Re

and Rg are thus equal at any temperature, indicating the complete
breakdown of the rotating-wave approximation discussed above: the
jgæ R jeæ and jeæ R jgæ transitions do not require quantum absorption
or emission by the bath, respectively. The rates Re and Rg thus become
linear in time, manifesting the QZE13–15:

Re t=tcð Þ<2 _RR0t

Rg t=tcð Þ<2 _RR0t

_RR0:
ð?

{?
dvGT vð Þ~ B2

� �

This implies that in the short-time regime we have the universal Zeno
heating rate:

d

dt
ree{rgg

� �
<4 _RR0t rgg{ree

� �

Second, at intermediate non-markovian times t < 1/va, when the
sinc functions and GT in equations (4) have comparable widths, the
relaxation rates Re and Rg exhibit several unusual phenomena that stem
from time–energy uncertainty. The change in the overlap of the sinc
and GT functions with time results in damped aperiodic oscillations of
Re(t) and Rg(t), near the frequencies v0 – va and v0 1 va, respectively.
We call this oscillatory time dependence, which is displayed in neither
the QZE nor the converse AZE of accelerated relaxation12–14, the oscil-
latory Zeno effect (OZE). Owing to the negativity of the sinc function
between its consecutive maxima, we can have a negative relaxation rate,

which is completely forbidden by the rotating-wave approximation.
Because sinc[(v 1 va)t] is shifted much further from the peak of
GT(v) than is sinc[(v 2 va)t], Rg(t) is more likely to be negative than
is Re(t) (Figs 1a, 2a). Hence, rgg(t) may grow at the expense of ree(t)
more than is allowed by the thermal-equilibrium detailed balance. This
may cause transient cooling, as described below.

Third, at long times t? tc, the relaxation rates attain their ‘golden
rule’ (Markov) values15:

Re t?tcð Þ<2pGT zvað Þ

Rg t?tcð Þ<2pGT {vað Þ
The populations thus approach those of an equilibrium Gibbs state
the temperature of which is equal to that of the thermal bath (Fig. 1
main panel).

We now consider entropy dynamics. The entropy of rS relative to
its equilibrium state r0 (‘entropy distance’), and the negative of its
rate of change, can always be defined3,5:

S rS tð Þkr0ð Þ:Tr rS tð Þln rS tð Þf g{Tr rS tð Þln r0f g

s tð Þ:{
d

dt
S rS tð Þkr0ð Þ

ð5Þ

In the markovian realm, s thus defined is identified as the ‘entropy
production rate’2,3,5, and s(t) $ 0 is a statement of the second law of
thermodynamics in this realm. Because rS is diagonal, it follows (see
Supplementary Information section D) that s(t) is positive if and

only if d ree tð Þ{ r0ð Þee

�� ��� �
=dtƒ0, consistent with the interpretation

of the relative entropy S(rSjjr0) in equations (5) as the entropic
distance from equilibrium. However, in the short-time regime,
whenever the oscillatory ree(t) drifts away from its initial or final
equilibrium s takes negative values (Fig. 1b) that are forbidden by
the markovian statement of the second law.

To realistically model the repeated measurements, that is, give
them finite duration, we assume a smooth temporal profile of the
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Figure 2 | Maximal heating and cooling of the system. The main panel
shows the maximal heating (lower half) and cooling (upper half) of the
system, for different system (horizontal axis) and bath (vertical axis) initial
temperatures aS and aB (aS ? aB), where aS 5 "va/bS, aB 5 "va/bB, and
DaS 5 max(aS(t) 2 aS(0)) for heating and DaS 5 min(aS(t) 2 aS(0)) for
cooling. (b denotes the inverse temperature.) a, Rg and Re (see equations
(4)), depicted as spectral overlaps of GT(v) (red) and sinc[(v 1 va)t] (for
Rg) and sinc[(v 2 va)t] (for Re) (green). b, Example of a system undergoing

first Zeno heating and then oscillatory Zeno cooling, obtained from the
second-order master equation (blue) and from the exact numerical solution
for a discrete bath of 40 modes (red). c, Maximal Zeno heating (red) and
subsequent maximal oscillatory Zeno cooling (blue), as functions of the
common initial temperature of the system and the bath aS 5 aB. We note the
presence of a critical temperature for oscillatory Zeno cooling. Parameters:
tc 5 10/va, v0 5 va/0.7, c 5 4.36va. These effects can be strongly magnified
by choosing other suitable parameters. d, Possible experimental setup.
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coupling to the detector (see Supplementary Information section A).
The kth measurement then occurs at time tk and has a duration of
tk. Figure 1(main panel) compares the population evolution using
projective (impulsive) and finite-duration measurements with
tk < 0.1/va. Finite-duration measurements increase the Zeno heat-
ing in comparison with impulsive ones on account of the extra energy
supplied by the coupling to the detector. However, the basic effect is
seen (Fig. 1 main panel) to be the same and is governed by the time
derivative of ÆHSBæ (see equations (1)). Counterintuitively, finite-
duration measurements can increase the cooling, despite the extra
energy supplied by the apparatus.

If we repeat this procedure often enough, the TLSs will increasingly
either heat up or cool down, if we choose the time intervals Dtk to
coincide with either peaks or troughs of the ree oscillations, respec-
tively. The minimal value of s can also be progressively lowered with
each measurement (Fig. 1b). Because consecutive measurements
affect the bath and the system differently, they may acquire different
excitations or de-excitations, which then become the initial condi-
tions for subsequent QZE heating or OZE cooling. The results are
shown in Fig. 2 for both different (main panel) and common (Fig. 2c)
initial temperatures of the system and the bath. We note that the
system may heat up on account solely of the QZE, although the bath
is initially colder, or cool down on account solely of the OZE or AZE,
although the bath is initially hotter (Fig. 2 main panel). The bath may
also undergo changes in energy and entropy (Fig. 1c).

One experimental realization of these effects can involve atoms or
molecules in a microwave cavity (Fig. 2d) with a coupling spectrum
GT(v) (controllable using the cavity quality factor and temperature)
centred at v0. Measurements can be effected on such a TLS ensemble
with resonance frequency va in the microwave domain, at time inter-
vals Dtk < 1/(v0 6 va), using an optical quantum non-demolition
probe8 at a frequency vp such that vp?va and vp?v0. The probe
pulses undergo a different Kerr-nonlinear phase shift Dwe or Dwg

depending on the different symmetries (for example angular
momenta) of jeæ and jgæ. The relative abundance of Dwe and Dwg thus
reflects the ratio ree(tk)/rgg(tk). Such quantum non-demolition prob-
ing may be performed with time duration much shorter than v{1

a , that
is, vatk= 1, without resolving the energies of jeæ and jgæ. Ion traps or
solid matrices may serve as phonon baths instead of photonic cavities.

Since non-selective measurements increase the von Neumann
entropy of the detector ancillae, their entropic price precludes a ‘per-
petuum mobile’ if closed-cycle operation is attempted. However, if our
ancillae are laser pulses, they are only used once and we may progres-
sively change the TLS ensemble thermodynamics by consecutive
pulses, disregarding their entropic or energetic price. The practical
advantage of the predicted anomalies is the possibility of very rapid
control of cooling and entropy, which may be attained after several
measurements at t§v{1

a and is only limited by the measurement rate.
By contrast, conventional cooling requires much longer times, t? tc,
to reach thermal equilibrium. Likewise, temperature control based on
a feedback loop is inherently more time consuming. The proposed fast
cooling should be advantageous for quantum information processing
and storage based on quantum state distillation.

The findings that we report here establish a new link between fre-
quent quantum measurements, which are the operational probes of
short-time evolution, and non-equilibrium thermodynamical anom-
alies: heat and entropy rates of change that have the ‘wrong’ sign,
rather than displaying their usual monotonic approach to equilib-
rium. These anomalies are determined by the oscillatory or negative
values of the non-markovian quantum relaxation rates at short times
corresponding to large energy uncertainty. They reveal unfamiliar
general aspects of post-measurement quantum dynamics: the AZE,
which was initially proposed as a means of enhancing or accelerating
the initial-state change12–15, here can either restore the equilibrium

state or further depart from it via cooling. These anomalies underscore
the fact that the system and the bath are inseparable (entangled)6,23,
even under weak-coupling conditions, a fact that has important impli-
cations for their short-time dynamics.

These results prompt further studies of a hitherto unexplored non-
markovian short-time domain where neither the existing formula-
tions of the second law of thermodynamics2,5 nor the common
notion that heat always flows from hotter to colder ensembles is
applicable. This calls for an examination of non-markovian designs
of quantum heat engines and their comparison to their markovian
counterparts24. The short-time domain may also necessitate an in-
depth scrutiny of fundamental quantum thermodynamical concepts.
In particular, the need for temporal ‘coarse graining’ of entropy
should be examined.
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