QUBIG Phase Modulator

What is maximum intensity that can be put in QUBIG phase modulator? What is the relationship between beam diameter, power and peak intensity,

Gaussian Beam

$$E(r,z) = E_0 \hat{x} \frac{\omega_0}{\omega(z)} \exp\left(\frac{-r^2}{\omega(z)^2}\right) \exp\left(-i\left(kz + k\frac{r^2}{2R(z)} - \psi(z)\right)\right)$$
$$I(r,z) = I_0 \left(\frac{\omega_0}{\omega(z)}\right)^2 \exp\left(\frac{-r^2}{\omega(z)^2}\right)$$

Test Data Sheet

PM-Rb_6.8 S/N: M31621

Resonant electro-optic phase modulator with - temperature control option

RF properties	Value	Unit
Resonance frequency: f ₀ ¹⁾	6779 - 6895	MHz
Preset frequency: f _{set} ¹⁾	6835	MHz
Bandwidth: Δv	24.5	MHz
Quality factor Q	279	
Required RF power for 1 rad @ 780 nm	31.6	dBm
max. RF power: RF _{max} ²)	4	W

Optical properties		
Aperture	ø 2	mm
Wavefront distortion (@ 633 nm)	λ/4	nm
recommended max. optical intensity (@ 780nm)	5	W/mm ²
AR coating (R< 1%)	780	nm

1) at 21.0 °C ²⁾ no damage with RF_{in} < 10W, but use of a proper heatsink is strongly recommended at high powers

The maximum allowed intensity is 5W/mm²

Source Image

Source Image in MATLAB

Fit in MATLAB

The waist dimensions are

 $\omega_x = 0.13$ mm $\omega_y = 0.1$ mm

Peak Intensity

$$I(0,z) = \frac{2P_0}{\pi\omega(z)^2}$$

o

$$I(0,z) = \frac{2P_0}{\pi\omega(z)^2} \qquad P_0 = \frac{\pi}{2} \times 5 \times 0.1 \times 0.13$$

$$P_0 = 0.1W = 100mW$$

OLD

Given that the maximum peak intensity, I₀, allowed is 1W/mm2 (100W/cm²)

So for $P_0 = 100$ mW, the waist will be

$$I(0,0) = \frac{2P_0}{\pi\omega(0)^2}$$

$$\omega(0)^2 = \frac{2 \times 100}{\pi \times 200} = \frac{1}{\pi}$$

$$\omega(0) = 0.564cm$$

$$\omega(0) = 0.00564cm$$

Connection between waist and sigma?

$$I(r) = I_0 e^{-2r^2/\omega^2} = I_0 e^{-r^2/2\sigma^2} \quad \Longrightarrow \quad \omega = 2\sigma$$

What waist do you have?

OLD

With 20cm telescope what will waist be?.

$$\omega_1 = \frac{795 \times 10^{-7} \times 30}{\pi \times 0.0069}$$